分数乘法知识点归类与练****一、分数乘法 (一)分数乘法的意义: 1、分数乘整数与整数乘法的意义相同。都是求几个相同加数的和的简便运算。 2、分数乘分数是求一个数的几分之几是多少。 (二)分数乘法的计算法则: 1、分数与整数相乘:分子与整数相乘的积做分子,分母不变。(整数和分母约分) 2、分数与分数相乘:用分子相乘的积做分子,分母相乘的积做分母。 3、为了计算简便,能约分的要先约分,结果化成最简分数。 注意:当带分数进行乘法计算时,要先把带分数化成假分数再进行计算。 (三)规律:(乘法中比较大小时) 一个数(0除外)乘大于1的数,积大于这个数。 一个数(0除外)乘小于1的数(0除外),积小于这个数。 一个数(0除外)乘1,积等于这个数。 (四)整数乘法的交换律、结合律和分配律,对于分数乘法也同样适用。 乘法交换律: a × b = b × a 乘法结合律: ( a × b )×c = a × ( b × c ) 乘法分配律: ( a + b )×c = a c + b c 乘法分配率逆运算: a c + b c=( a + b )×c 中考考点1:分数的乘法计算 此类题在中考中的考查多为基础性题目,一般不单独命题,题型有选择题、填空题和计算题,解决这类问题需牢记分数乘法的运算法则,灵活的运用乘法的运算律进行简便运算。 例1: 练****1: 分数简便运算常见题型 第一种:连乘——乘法交换律的应用 例题:1) 2) 3) 涉及定律:乘法交换律 基本方法:将分数相乘的因数互相交换,先行运算。 第二种:乘法分配律的应用 例题:1) 2) 3) 涉及定律:乘法分配律 基本方法:将括号中相加减的两项分别与括号外的分数相乘,符号保持不变。 第三种:乘法分配律的逆运算 例题:1) 2) 3) 涉及定律:乘法分配律逆向定律 基本方法:提取两个乘式中共有的因数,将剩余的因数用加减相连,同时添加括号,先行运算。 第四种:添加因数“1” 例题:1) 2) 3) 涉及定律:乘法分配律逆向运算 基本方法:添加因数“1”,将其中一个数n转化为1×n的形式,将原式转化为两两之积相加减的形式,再提取公有因数,按乘法分配律逆向定律运算。 第五种:数字化加式或减式 例题:1) 2) 3) 涉及定律:乘法分配律 基本方法:将一个大数转化为两个小数相加或相减的形式,或将一个普通的数字转化为整式整百或1等与另一个较小的数相加减的形式,再按照乘法分配律解题。 第六种:带分数化加式 例题:1) 2) 3) 涉及定律:乘法分配律 基本方法:将带分数转化为整数部分和分数部分相加的形式,再按照乘法分配律计算。 第七种:乘法交换律与乘法分配律相结合