单元测评 概 率
(时间:90分钟 满分:120分)
第Ⅰ卷(选择题,共50分)
一、选择题:本大题共10小题,共50分.[来源:Zxxk.Com]
1.编号为1,2,3的三位学生随意坐入编号为1,2,3的三个座位,每位学生坐一个座位,则三位学生所坐的座位号与学生的编号恰好都不同的概率是( )
A. B. C. D.
解析:编号为1,2,3的三位学生随意坐入编号为1,2,3的三个座位时,1号学生有3种坐法,2号学生有2种坐法,3号学生只有1种坐法,所以一共有6种坐法,其中座位号与学生的编号恰好都不同的坐法只有2种,所以所求的概率P==.
答案:B
2.小明同学的QQ密码是由0,1,2,3,4,5,6,7,8,9这10个数字中不同的6个数字组成的六位数码,由于长时间未登录QQ,小明忘记了密码的最后一个数字,如果小明登录QQ时密码的最后一个数字随意选取,则恰好能登录的概率是( )
A. B.
C. D.
解析:从0,1,2,3,4,5,6,7,8,9中任取一个数字有10个基本事件,恰巧是密码最后一位数字有1个基本事件,则恰好能登录的概率为.
答案:D
3. 已知点P是边长为4的正方形内任一点,则点P到四个顶点的距离均大于2的概率是( )
A. B.1-
C. D.
解析:如图所示,边长为4的正方形ABCD,分别以A、B、C、D为圆心,都以2为半径画弧截正方形ABCD后剩余部分是阴影部分.
则阴影部分的面积是42-4××π×22=16-4π,
所以所求概率是=1-.
答案:B
4.(2013·江西卷)集合A={2,3},B={1,2,3},从A,B中各任意取一个数,则这两数之和等于4的概率是( )
A. B.
C. D.
解析:从A,B中各任意取一个数,对应的基本事件有:(2,1),(2,2),(2,3),(3,1),(3,2),(3,3)共6种,而这两个数之和等于4的基本事件有:(2,2),(3,1),共2种,故所求的概率为P==.
答案:C
5.从甲、乙、丙三人中,任选两名代表,甲被选中的概率为( )
A. B.
C. D.
解析:甲、乙、丙三人中任选两名代表有如下三种情况:(甲、乙)、(甲、丙)、(乙、丙),其中甲被选中包含两种,因此所求概率为P=.
答案:D
6.(2013·安徽卷)若某公司从五位大学毕业生甲、乙、丙、丁、戊中录用三人,这五人被录用的机会均等,则甲或乙被录用的概率为( )
A. B.
C. D.
解析:从甲、乙、丙、丁、戊5人中录用3人的所有事件为:甲乙丙、甲乙丁、甲乙戊、乙丙丁、乙丙戊、丙丁戊、乙丁戊、甲丙丁、甲丙戊、甲丁戊,共10种,其中甲或乙被录用包含9个基本事件,故甲或乙被录用的概率为.故选D.
答案:D
7.若连续抛掷两次骰子得到的点数分别为m,n,则点P(m,n)在直线x+y=4上的概率是( )
A. B.
C. D.
解析:由题意知(m,n)的取值情况有(1,1),(1,2),…,(1,6);(2,1),
(2,2),…,(2,6);…;(6,1),(6,2),…,(6,6),共36种情况.而满足点P(m