高中数学人教A版选择性必修第一册阶段检测试卷6
第I卷(选择题)
请点击修改第I卷的文字说明
一、单选题
1.过点作抛物线的切线,,切点分别为,,若的重心坐标为,且P在抛物线上,则的焦点坐标为( )
A. B. C. D.
2.已知点为抛物线的焦点,,点为抛物线上一动点,当最小时,点恰好在以,为焦点的双曲线上,则该双曲线的渐近线的斜率的平方为( )
A. B. C. D.
3.在平面直线坐标系中,定义为两点的“切比雪夫距离”,又设点P及上任意一点Q,称的最小值为点P到直线的“切比雪夫距离”记作给出下列四个命题:( )
①对任意三点A、B、C,都有
②已知点P(3,1)和直线则
③到原点的“切比雪夫距离”等于的点的轨迹是正方形;
④定点动点满足则点P的轨迹与直线(为常数)有且仅有2个公共点.
其中真命题的个数是( )
A.4 B.3 C.2 D.1
4.已知点是抛物线的对称轴与准线的交点,点为抛物线的焦点,点在抛物线上且满足,若取最大值时,点恰好在以为焦点的双曲线上,则双曲线的离心率为
A. B. C. D.
5.已知点是椭圆的上顶点,分别是椭圆左右焦点,直线
将三角形分割为面积相等两部分,则的取值范围是( )
A. B.
C. D.
6.如图,在圆锥中,,是上的动点,是的直径,,是的两个三等分点,,记二面角,的平面角分别为,,若,则的最大值是( )
A. B. C. D.
二、多选题
7.已知双曲线:与椭圆有公共焦点,的左、右焦点分别为,,且经过点,则下列说法正确的是( )
A.双曲线的标准方程为
B.若直线与双曲线无交点,则
C.设,过点的动直线与双曲线交于,两点(异于点),若直线与直线的斜率存在,且分别记为,,则
D.若动直线与双曲线恰有1个公共点,且与双曲线的两条渐近线分别交于点,,则(为坐标原点)的面积为定值1
8.在棱长为1的正方体中,为侧面(不含边界)内的动点,为线段上的动点,若直线与的夹角为,则下列说法正确的是( )
A.线段的长度为
B.的最小值为1
C.对任意点,总存在点,便得
D.存在点,使得直线与平面所成的角为60°
第II卷(非选择题)
请点击修改第II卷的文字说明
三、填空题
9.已知点和圆上两个不同的点,,满足,是弦的中点,
给出下列四个结论:
①的最小值是4;
②点的轨迹是一个圆;
③若点,点,则存在点,使得;
④△面积的最大值是.
其中所有正确结论的序号是________.
10.参加数学兴趣小组的小何同学在打篮球时,发现当篮球放在地面上时,篮球的斜上方灯泡照过来的光线使得篮球在地面上留下的影子有点像数学课堂上学过的椭圆,但他自己还是不太确定这个想法,于是回到家里翻阅了很多参考资料,终于明白自己的猜想是没有问题的,而且通过学****他还确定地面和篮球的接触点(切点)就是影子椭圆的焦点.他在家里做了个探究实验:如图所示,桌面上有一个篮球,若篮球的半径为个单位长度,在球的右上方有一个灯泡(当成质点),灯泡与桌面的距离为个单位长度,灯泡垂直照射在平面的点为,影子椭圆的右顶点到点的距离为个单位长度,则这个影子椭圆的离心率______.
11.抛物线与双曲线上一点的有共同的焦点,两曲线在第一象限的交点为,且到焦点的距离为5,则双曲线的离心率=______.
12.已知圆,直线,点,点.给出下列4个结论:
①当时,直线与圆相离;
②若直线是圆的一条对称轴,则;
③若直线上存在点,圆上存在点,使得,则的最大值为;
④为圆上的一动点,若,则的最大值为.
其中所有正确结论的序号是__________.
四、解答题
13.平面直角坐标系中,为坐标原点,抛物线的焦点为,点在抛物线上,且.关于原点的对称点为,圆的半径等于,以为圆心的动圆过且与圆相切.
(1)求动点的轨迹曲线的标准方程;
(2)四边形内接于曲线,点分别在轴正半轴和轴正半轴上,设直线的斜率分别是,且.
(i)记直线的交点为,证明:点在定直线上;
(ii)证明:.
14.如图,在直角中, ,角,,所对的边长分别为,,.
边的中线所在直线方程为;边的中线所在直线方程为.
(1)若点坐标为,求外接圆的方程;
(2)若,求的面积.
15.已知椭圆,过动点的直线交轴于点,交椭圆于点,(点在第一象限),且是线段的中点,过点作轴的垂线交椭圆于另一点,延长交椭圆于点.点在椭圆上.
(1)求椭圆的焦距;
(2)设直线的斜率为,直线的斜率为,证明:为定值;
(3)求直线倾斜角的最小