高中数学人教A版选择性必修第一册阶段检测试卷11
第I卷(选择题)
请点击修改第I卷的文字说明
一、单选题
1.如图,在圆锥中,,是上的动点,是的直径,,是的两个三等分点,,记二面角,的平面角分别为,,若,则的最大值是( )
A. B. C. D.
2.如图,若正方体的棱长为1,点M是正方体的侧面上的一个动点(含边界),P是棱的中点,则下列结论正确的是( )
A.沿正方体的表面从点A到点P的最短路程为
B.若保持,则点M在侧面内运动路径的长度为
C.三棱锥的体积最大值为
D.若M在平面内运动,且,点M的轨迹为抛物线
3.已知点为抛物线的焦点,,点为抛物线上一动点,当最小时,点恰好在以,为焦点的双曲线上,则该双曲线的渐近线的斜率的平方为( )
A. B. C. D.
4.已知点是椭圆的上顶点,分别是椭圆左右焦点,直线将三角形分割为面积相等两部分,则的取值范围是( )
A. B.
C. D.
5.在平面直线坐标系中,定义为两点的“切比雪夫距离”,又设点P及上任意一点Q,称的最小值为点P到直线的“切比雪夫距离”记作给出下列四个命题:( )
①对任意三点A、B、C,都有
②已知点P(3,1)和直线则
③到原点的“切比雪夫距离”等于的点的轨迹是正方形;
④定点动点满足则点P的轨迹与直线(为常数)有且仅有2个公共点.
其中真命题的个数是( )
A.4 B.3 C.2 D.1
6.已知直线与椭圆切于点,与圆交于点,圆在点处的切线交于点,为坐标原点,则的面积的最大值为
A. B.2 C. D.1
二、多选题
7.在棱长为1的正方体中,点满足,,,则以下说法正确的是( )
A.当时,平面
B.当时,存在唯一点使得与直线的夹角为
C.当时,长度的最小值为
D.当时,与平面所成的角不可能为
8.抛物线的焦点为,动直线与抛物线交于两点且,直线分别与抛物线交于两点,则下列说法正确的是( )
A.直线恒过定点 B.
C. D.若于点,则点的轨迹是圆
第II卷(非选择题)
请点击修改第II卷的文字说明
三、填空题
9.如图,过抛物线的焦点F作两条互相垂直的弦AB、CD,若与面积之和的最小值为32,则抛物线的方程为___________.
10.如图,在长方体中,,点为线段上的动点(包含线段端点),则下列结论正确的__________.
①当时,平面;
②当时,平面;
③的最大值为;
④的最小值为.
11.已知点和圆上两个不同的点,,满足,是弦的中点,
给出下列四个结论:
①的最小值是4;
②点的轨迹是一个圆;
③若点,点,则存在点,使得;
④△面积的最大值是.
其中所有正确结论的序号是________.
12.已知抛物线C:的焦点F到其准线的距离为2,圆M:,过F的直线l与抛物线C和圆M从上到下依次交于A,P,Q,B四点,则的最小值为__________.
四、解答题
13.已知椭圆Γ:,斜率为k的直线l与椭圆Γ有两个不同的公共点A、B,Γ的左、右焦点分别为、.
(1)若直线l经过点,求的周长;
(2)若,求面积的取值范围;
(3)若, ,直线与椭圆Γ的另一个交点为C,直线与椭圆Γ的另一个交点为D,求证:直线过定点,并求出定点的坐标.
14.已知椭圆过点,且离心率为.
(1)求椭圆的方程;
(2)过的直线交椭圆于,两点,判断点与以线段为直径的圆的位置关系,并说明理由.
15.已知拋物线:()的焦点为,为坐标原点,为拋物线上一点,且.
(1)求拋物线的方程;
(2)设直线:交轴于点,直线过点且与直线平行,动直线过点与拋物线相交于,两点,直线,分别交直线于点,,证明:.
16.已知抛物线,两条直线,分别于抛物线交于,两点和,两点.
(1)若线段的中点为,求直线的斜率;
(2)若直线,相互垂直且同时过点,求四边形面积的最小值.
参考答案
1.B
【分析】
设底面圆的半径为,,以所在直线为轴,以垂直于所在直线为轴,以所在直线为轴建立空间直角坐标系,写出各个点的坐标.利用法向量求得二面角与夹角的余弦值.结合即可求得的取值范围,即可得的最大值.
【详解】
设底面圆的半径为,,以所在直线为轴,以垂直于所在直线为轴,以所在直线为轴建立空间直角坐标系,如下图所示:
则由
可得,
,是的两个三等分点
则
所以
设平面的法向量为
则,代入可得
化简可得
令,解得
所以
平面的法向量为
由图可知, 二面角