下载此文档

专题13 特殊的平行四边形-2022年中考数学真题分项汇编(人教版)(解析版).docx


初中 七年级 上学期 数学 人教版

1340阅读234下载67页3.68 MB

下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
下载所得到的文件列表
专题13 特殊的平行四边形-2022年中考数学真题分项汇编(人教版)(解析版).docx
文档介绍:
专题13 特殊的平行四边形
一.选择题
1.(2022·陕西)在下列条件中,能够判定为矩形的是(       )
A. B. C. D.
【答案】D
【分析】根据矩形的判定定理逐项判断即可.
【详解】当AB=AC时,不能说明是矩形,所以A不符合题意;
当AC⊥BD时,是菱形,所以B不符合题意;
当AB=AD时,是菱形,所以C不符合题意;
当AC=BD时,是矩形,所以D符合题意.故选:D.
【点睛】本题主要考查了矩形的判定,掌握判定定理是解题的关键.有一个角是直角的平行四边形是矩形;对角线相等的平行四边形是矩形.
2.(2022·湖南衡阳)下列命题为假命题的是(       )
A.对角线相等的平行四边形是矩形 B.对角线互相垂直的平行四边形是菱形
C.有一个内角是直角的平行四边形是正方形 D.有一组邻边相等的矩形是正方形
【答案】C
【分析】根据矩形、菱形、正方形判定方法,一一判断即可.
【详解】解:A、对角线相等的平行四边形是矩形,是真命题,本选项不符合题意.
B、对角线互相垂直的平行四边形是菱形,是真命题,本选项不符合题意.
C、有一个内角是直角的平行四边形可能是长方形,是假命题,应该是矩形,推不出正方形,本选项符合题意.
D、有一组邻边相等的矩形是正方形,是真命题,本选项不符合题意.故选:C.
【点睛】本题考查命题与定理,矩形、菱形、正方形的判定等知识,解题的关键是熟练掌握正方形的判定方法,属于中考常考题型.
3.(2022·湖南怀化)下列说法正确的是(  )
A.相等的角是对顶角 B.对角线相等的四边形是矩形
C.三角形的外心是它的三条角平分线的交点 D.线段垂直平分线上的点到线段两端的距离相等
【答案】D
【分析】根据对顶角的概念、矩形的判定、三角形外心的定义和垂直平分线的性质逐项判定即可得出结论.
【详解】解:A、根据对顶角的概念可知,相等的角不一定是对顶角,故该选项不符合题意;
B、根据矩形的判定“对角线相等的平行四边形是矩形”可知该选项不符合题意;
C、根据三角形外心的定义,外心是三角形外接圆圆心,是三角形三条边中垂线的交点,故该选项不符合题意;D、根据线段垂直平分线的性质可知该选项符合题意;故选:D.
【点睛】本题考查基本几何概念、图形判定及性质,涉及到对顶角的概念、矩形的判定、三角形外心的定义和垂直平分线的性质等知识点,熟练掌握相关几何图形的定义、判定及性质是解决问题的关键.
4.(2022·重庆)如图,在正方形中,平分交于点,点是边上一点,连接,若,则的度数为(       )
A. B. C. D.
【答案】C
【分析】先利用正方形的性质得到,,,利用角平分线的定义求得,再证得,利用全等三角形的性质求得,最后利用即可求解.
【详解】解:∵四边形是正方形,
∴,,,
∵平分交于点,
∴,
在和中,

∴,
∴ ,
∴,故选:C
【点睛】本题考查了正方形的性质、全等三角形的判定和性质以及角平分线的定义,熟练掌握全等三角形的判定方法是解题的关键.
5.(2022·江苏连云港)如图,将矩形ABCD沿着GE、EC、GF翻折,使得点A、B、D恰好都落在点O处,且点G、O、C在同一条直线上,同时点E、O、F在另一条直线上.小炜同学得出以下结论:①GF∥EC;②AB=AD;③GE=DF;④OC=2OF;⑤△COF∽△CEG.其中正确的是(       )
A.①②③ B.①③④ C.①④⑤ D.②③④
【答案】B
【分析】由折叠的性质知∠FGE=90°,∠GEC=90°,点G为AD的中点,点E为AB的中点,设AD=BC=2a,AB=CD=2b,在Rt△CDG中,由勾股定理求得b=,然后利用勾股定理再求得DF=FO=,据此求解即可.
【详解】解:根据折叠的性质知∠DGF=∠OGF,∠AGE=∠OGE,
∴∠FGE=∠OGF+∠OGE=(∠DGO+∠AGO) =90°,
同理∠GEC=90°,∴GF∥EC;故①正确;
根据折叠的性质知DG=GO,GA=GO,
∴DG=GO=GA,即点G为AD的中点,同理可得点E为AB的中点,
设AD=BC=2a,AB=CD=2b,则DG=GO=GA=a,OC=BC=2a,AE=BE=OE=b,∴GC=3a,
在Rt△CDG中,CG2=DG2+CD2,即(3a)2=a2+(2b)2,∴b=,
∴AB=2=AD,故②不正确;
设DF=FO=x,则FC=2b-x,
在Rt△COF中,CF2=OF2+OC2,
即(2b-x)2=x2+(2a)2,
∴x==,即DF=FO=,GE=a,
∴,∴GE=
内容来自帮提分https://www.sfbroad.com转载请标明出处.
相关文档