下载此文档

专题20图形的平移翻折对称(共34题)-2021年中考数学真题分项汇编(解析版)【人教版】(第01期).docx


初中 七年级 上学期 数学 人教版

1340阅读234下载46页2.41 MB

下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
下载所得到的文件列表
专题20图形的平移翻折对称(共34题)-2021年中考数学真题分项汇编(解析版)【人教版】(第01期).docx
文档介绍:
2021年中考数学真题分项汇编【全国通用】(第01期)
专题20图形的平移翻折对称(共34题)
姓名:__________________ 班级:______________ 得分:_________________
一、单选题
1.(2021·湖南衡阳市·中考真题)在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是(  )
A. B. C. D.
【答案】D
【分析】
根据轴对称图形的概念求解.如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.
【详解】
A、不是轴对称图形,故A不符合题意;
B、不是轴对称图形,故B不符合题意;
C、不是轴对称图形,故C不符合题意;
D、是轴对称图形,故D符合题意.
故选D.
【点睛】
本题主要考查轴对称图形的知识点.确定轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.
2.(2021·湖南中考真题)下列垃圾分类标志分别是厨余垃圾、有害垃圾、其他垃圾和可回收物,其中既是轴对称图形又是中心对称图形的是( )
A. B. C. D.
【答案】B
【分析】
根据轴对称图形与中心对称图形的概念求解.
【详解】
解:A、是轴对称图形,不是中心对称图形,故此选项不合题意;
B、既是轴对称图形,也是中心对称图形,故此选项符合题意;
C、是轴对称图形,不是中心对称图形,故此选项不合题意;
D、既不是轴对称图形,也不是中心对称图形,故此选项不符合题意;
故选:B.
【点睛】
此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后与原图重合.
3.(2021·四川自贡市·中考真题)下列图形中,是轴对称图形且对称轴条数最多的是( )
A. B. C. D.
【答案】D
【分析】
利用轴对称图形的定义逐一判断即可.
【详解】
解:A是轴对称图形,对称轴有1条;
B不是轴对称图形;
C不是轴对称图形;
D是轴对称图形,对称轴有2条;
故选:D.
【点睛】
本题考查识别轴对称图形,掌握轴对称图形的定义是解题的关键.
4.(2021·四川泸州市·中考真题)在平面直角坐标系中,将点A(-3,-2)向右平移5个单位长度得到点B,则点B关于y轴对称点的坐标为( )
A.(2,2) B.(-2,2) C.(-2,-2) D.(2,-2)
【答案】C
【分析】
根据点的平移规律左减右加可得点B的坐标,然后再根据关于B轴的对称点的坐标特点:横坐标互为相反数,纵坐标不变可得答案.
【详解】
解:点A(-3,-2)向右平移5个单位长度得到点B(2,-2),
点B关于y轴对称点的坐标为(-2,-2),
故选:C.
【点睛】
本题主要考查了点的平移和关于y轴的对称点的坐标特点,关键是掌握点的坐标的变化规律.
5.(2021·四川凉山彝族自治州·中考真题)下面四个交通标志图是轴对称图形的是( )
A. B. C. D.
【答案】C
【分析】
如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,据此进行判断即可.
【详解】
解:A、不是轴对称图形,故不合题意;
B、不是轴对称图形,故不合题意;
C、是轴对称图形,故符合题意;
D、不是轴对称图形,故不合题意;
故选C.
【点睛】
本题考查了轴对称图形,判断轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.
6.(2021·四川凉山彝族自治州·中考真题)在平面直角坐标系中,将线段AB平移后得到线段,点的对应点的坐标为,则点的对应点的坐标为( )
A. B. C. D.
【答案】C
【分析】
根据点A到A′确定出平移规律,再根据平移规律列式计算即可得到点B′的坐标.
【详解】
解:∵,,
∴平移规律为横坐标减4,纵坐标减4,
∵,
∴点B′的坐标为,
故选:C.
【点睛】
本题考查了坐标与图形变化-平移,平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减,先确定出平移规律是解题的关键.
7.(2021·浙江绍兴市·中考真题)数学兴趣小组同学从“中国结”的图案(图1)中发现,用相同的菱形放置,可得到更多的菱形.如图2,用2个相同的菱形放置,得到3个菱形.下面说法正确的是( )
A.用3个相同的菱形放置,最多能得到6个菱形
B.用4个相同的菱形放置,最多能得到15个菱形
C.用5个相同的菱形放置,最多能得到27
内容来自帮提分https://www.sfbroad.com转载请标明出处.
相关文档