下载此文档

专题23锐角三角函数-2021年中考数学真题分项汇编(解析版)【人教版】(第02期).docx


初中 七年级 上学期 数学 人教版

1340阅读234下载59页2.22 MB

下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
下载所得到的文件列表
专题23锐角三角函数-2021年中考数学真题分项汇编(解析版)【人教版】(第02期).docx
文档介绍:
2021年中考数学真题分项汇编【全国通用】(第02期)
专题23锐角三角函数
姓名:__________________ 班级:______________ 得分:_________________
一、单选题
1.如图,在一次数学实践活动中,小明同学要测量一座与地面垂直的古塔的高度,他从古塔底部点处前行到达斜坡的底部点处,然后沿斜坡前行到达最佳测量点处,在点处测得塔顶的仰角为,已知斜坡的斜面坡度,且点,,,,在同一平面内,小明同学测得古塔的高度是(  )
A. B. C. D.
【答案】A
【分析】
过作于,于,得到,,设,,根据勾股定理得到,求得,,,于是得到结论.
【详解】
解:过作于,于,
,,
斜坡的斜面坡度,

设,,


,,




故选:A.
【点睛】
本题考查了解直角三角形的应用仰角俯角问题,解直角三角形的应用坡角坡度问题,正确的作出辅助线构造直角三角形是解题的关键.
2.无人机低空遥感技术已广泛应用于农作物监测.如图,某农业特色品牌示范基地用无人机对一块试验田进行监测作业时,在距地面高度为的处测得试验田右侧出界处俯角为,无人机垂直下降至处,又测得试验田左侧边界处俯角为,则,之间的距离为(参考数据:,,,,结果保留整数)( )
A. B.
C. D.
【答案】C
【分析】
根据题意易得OA⊥MN,∠N=43°,∠M=35°,OA=135m,AB=40m,然后根据三角函数可进行求解.
【详解】
解:由题意得:OA⊥MN,∠N=43°,∠M=35°,OA=135m,AB=40m,
∴,
∴,,
∴;
故选C.
【点睛】
本题主要考查解直角三角形的应用,熟练掌握三角函数是解题的关键.
3.如图,是的外接圆,CD是的直径.若,弦,则的值为( )
A. B. C. D.
【答案】A
【分析】
连接AD,根据直径所对的圆周角等于90°和勾股定理,可以求得AD的长,然后即可求得∠ADC的余弦值,再根据同弧所对的圆周角相等,可以得到∠ABC=∠ADC,从而可以得到cos∠ABC的值.
【详解】
解:连接AD,如右图所示,
∵CD是⊙O的直径,CD=10,弦AC=6,
∴∠DAC=90°,
∴AD==8,
∴cos∠ADC==,
∵∠ABC=∠ADC,
∴cos∠ABC的值为,
故选:A.
【点睛】
本题考查三角形的外接圆与外心、圆周角、锐角三角函数、勾股定理,解答本题的关键是求出cos∠ADC的值,利用数形结合的思想解答.
4.如图,点A、B、C在边长为1的正方形网格格点上,下列结论错误的是(  )
A.sinB B.sinC
C.tanB D.sin2B+sin2C=1
【答案】A
【分析】
根据勾股定理得出AB,AC,BC的长,进而利用勾股定理的逆定理得出△ABC是直角三角形,进而解答即可.
【详解】
解:由勾股定理得:
,
∴△ABC是直角三角形,∠BAC=90°,
∴,,,,只有A错误.
故选择:A.
【点睛】
此题考查解直角三角形,关键是根据勾股定理得出AB,AC,BC的长解答.
5.如图,在⊙O中,尺规作图的部分作法如下:(1)分别以弦AB的端点A、B为圆心,适当等长为半径画弧,使两弧相交于点M;(2)作直线OM交AB于点N.若OB=10,AB=16,则tan∠B等于( )
A. B. C. D.
【答案】B
【分析】
根据尺规作图的作法,可得 垂直平分 ,在 中,利用勾股定理求出ON,即可解答.
【详解】
解:根据尺规作图的作法,得: 垂直平分 ,
即 ,
∵AB=16,
∴,
在 中, ,
∴ ,

故选:B
【点睛】
本题主要考查了尺规作图—垂直平分线的作法和解直角三角形,解题的关键是熟练掌握垂直平分线的作法和用勾股定理解直角三角形及求锐角三角函数值.
6.如图,点C是以点O为圆心,AB为直径的半圆上一点,连接AC,BC,OC.若AC=4,BC=3,则sin∠BOC的值是(  )
A.1 B. C. D.
【答案】B
【分析】
如图,过点C作CH⊥AB于H.利用勾股定理求出AB,再利用面积法求出CH,可得结论.
【详解】
解:如图,过点C作CH⊥AB于H.
∵AB是直径,
∴∠ACB=90°,
∵AC=4,BC=3,
∴AB=,
∴OC=AB=,
∵=•AB•CH=•AC•BC,
∴CH=,
内容来自帮提分https://www.sfbroad.com转载请标明出处.
相关文档