下载此文档

人教版初中数学专题16 二次函数的存在性问题(解析版).doc


初中 七年级 下学期 数学 人教版

1340阅读234下载85页5.01 MB

下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
下载所得到的文件列表
人教版初中数学专题16 二次函数的存在性问题(解析版).doc
文档介绍:
决胜2021中考数学压轴题全揭秘精品
专题16二次函数的存在性问题
【考点1】二次函数与相似三角形问题
【例1】(2020·湖北随州·中考真题)如图,在平面直角坐标系中,抛物线的对称轴为直线,其图象与轴交于点和点,与轴交于点.

(1)直接写出抛物线的解析式和的度数;
(2)动点,同时从点出发,点以每秒3个单位的速度在线段上运动,点以每秒个单位的速度在线段上运动,当其中一个点到达终点时,另一个点也随之停止运动.设运动的时间为秒,连接,再将线段绕点顺时针旋转,设点落在点的位置,若点恰好落在抛物线上,求的值及此时点的坐标;
(3)在(2)的条件下,设为抛物线上一动点,为轴上一动点,当以点,,为顶点的三角形与相似时,请直接写出点及其对应的点的坐标.(每写出一组正确的结果得1分,至多得4分)
【答案】(1),;(2)t=,D点坐标为; (3);;; ;; ;; ; ;; .
【分析】
(1)根据抛物线的对称轴以及点B坐标可求出抛物线表达式;
(2)过点N作于E,过点D作于F,证明,得到,从而得到点D坐标,代入抛物线表达式,求出t值即可;
(3)设点P(m,),当点P在y轴右侧,点Q在y轴正半轴,过点P作PR⊥y轴于点R,过点D作DS⊥x轴于点S,根据△CPQ∽△MDB,得到,从而求出m值,再证明△CPQ∽△MDB,求出CQ长度,从而得到点Q坐标,同理可求出其余点P和点Q坐标.
【详解】
解:(1)∵抛物线的对称轴为直线,
∴,则b=-3a,
∵抛物线经过点B(4,0),
∴16a+4b+1=0,将b=-3a代入,
解得:a=,b=,
抛物线的解析式为:,
令y=0,解得:x=4或-1,
令x=0,则y=1,
∴A(-1,0),C(0,1),
∴tan∠CAO=,
∴;
(2)由(1)易知,
过点N作于E,过点D作于F,
∵∠DMN=90°,
∴∠NME+∠DMF=90°,又∠NME+∠ENM=90°,
∴∠DMF=∠ENM,
, ,
(AAS),

由题意得:,,,



,又,
故可解得:t=或0(舍),
经检验,当t=时,点均未到达终点,符合题意,
此时D点坐标为;
(3)由(2)可知:D,t=时,M(,0),B(4,0),C(0,1),
设点P(m,),
如图,当点P在y轴右侧,点Q在y轴正半轴,
过点P作PR⊥y轴于点R,过点D作DS⊥x轴于点S,
则PR=m,DS=,
若△CPQ∽△MDB,
∴,则,
,解得:m=0(舍)或1或5(舍),
故点P的坐标为:,
∵△CPQ∽△MDB,
∴,
当点P时,,解得:CQ=,,
∴点Q坐标为(0,),

同理可得:点P和点Q的坐标为:
;;
;;
;;;;;;.
【点睛】
本题是二次函数综合题,考查了二次函数的图像和性质,二次函数表达式,全等三角形的判定和性质,相似三角形的性质,难度较大,计算量较大,解题时注意结合函数图像,找出符合条件的情形.
【变式1-1】(2019·湖南娄底·中考真题)如图,抛物线与x轴交于点,点,与y轴交于点C,且过点.点P、Q是抛物线上的动点.
(1)求抛物线的解析式;
(2)当点P在直线OD下方时,求面积的最大值.
(3)直线OQ与线段BC相交于点E,当与相似时,求点Q的坐标.
【答案】(1)抛物线的表达式为:;(2)有最大值,当时,其最大值为;(3) 或或或.
【分析】
(1)函数的表达式为:y=a(x+1)(x-3),将点D坐标代入上式,即可求解;
(2)设点,求出,根据,利用二次函数的性质即可求解;
(3)分∠ACB=∠BOQ、∠BAC=∠BOQ,两种情况分别求解,通过角的关系,确定直线OQ倾斜角,进而求解.
【详解】
解:(1)函数的表达式为:,将点D坐标代入上式并解得:,
故抛物线的表达式为:…①;
(2)设直线PD与y轴交于点G,设点,
将点P、D的坐标代入一次函数表达式:并解得,直线PD的表达式为:,则,

∵,故有最大值,当时,其最大值为;
(3)∵,∴,
∵,故与相似时,分为两种情况:
①当时,,,,
过点A作AH⊥BC与点H,
,解得:,
∴CH=
则,
则直线OQ的表达式为:…②,
联立①②并解得:,
故点或;
②时,

则直线OQ的表达式为:…③,
联立①③并解得:,
故点或;
综上,点或或或.
【点睛】
本题考查的是二次函数综
内容来自帮提分https://www.sfbroad.com转载请标明出处.
相关文档