下载此文档

人教版初中数学专题二 作图问题(解析版).docx


初中 八年级 下学期 数学 人教版

1340阅读234下载5页501 KB

下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
下载所得到的文件列表
人教版初中数学专题二 作图问题(解析版).docx
文档介绍:
专题二 作图问题
类型1 尺规作图
1.在数学课本上,同学们已经探究过“经过已知直线外一点作这条直线的垂线”的尺规作图过程:
已知:直线l和l外一点P.
求作:直线l的垂线,使它经过点P.
作法:如图:(1)在直线l上任取两点A、B;
(2)分别以点A、B为圆心,AP,BP长为半径画弧,两弧相交于点Q;
(3)作直线PQ.
参考以上材料作图的方法,解决以下问题:
(1)以上材料作图的依据是:______________________________________________
(2)已知:直线l和l外一点P.
求作:⊙P,使它与直线l相切.(尺规作图,不写作法,保留作图痕迹,并把作图痕迹用黑色签字笔描黑)
解:(1)到线段两端点距离相等的点在这条线段的垂直平分线上
(2)如图⊙P即为所求.
2.如图,MN是⊙O的直径,MN=4,点A在⊙O上,∠AMN=30°,B为的中点,P是直径MN上一动点.
(1)利用尺规作图,确定当PA+PB最小时P点的位置(不写作法,但要保留作图痕迹).
(2)求PA+PB的最小值.
[来源:Z|xx|k.Com]
解:(1)如图1所示,点P即为所求;
(2)由(1)可知,PA+PB的最小值即为A′B的长,连接OA′、OB、OA,∵A′点为点A关直线MN的对称点,∠AMN=30°,∴∠AON=∠A′ON=2∠AMN=2×30°=60°,又∵B为的中点,∴=,∴∠BON=∠AOB=∠AON=30°,∴∠A′OB=60°+30°=90°,又∵MN=4,∴OA′=OB=MN=×4=2.∴在Rt△A′OB中,A′B=2,∴PA+PB的最小值为2.
3.如图,已知△ABC,∠B=40°.
(1)在图中,用尺规作出△ABC的内切圆O,并标出⊙O与边AB,BC,AC的切点D,E,F(保留痕迹,不必写作法);
(2)连接EF,DF,求∠EFD的度数.[来源:学,科,网]
解:(1)如图1,⊙O即为所求.
(2)如图2,连接OD,OE,∴OD⊥AB,OE⊥BC,∴∠ODB=∠OEB=90°,∵∠B=40°,∴∠DOE=140°,∴∠EFD=70°.
4.小明在“课外新世界”中遇到这样一道题:如图1,已知∠AOB=30°与线段a,你能作出边长为a的等边三角形△COD吗?小明的做法是:如图2,以O为圆心,线段a为半径画弧,分别交OA,OB于点M,N,在弧MN上任取一点P,以点M为圆心,MP为半径画弧,交弧CD于点C,同理以点N为圆心,NP为半径画弧,交弧CD于点D,连结CD,即△COD就是所求的等边三角形.
(1)请写出小明这种做法的理由;
(2)在此基础上请你作如下操作和探究(如图3):连结MN,MN是否平行于CD?为什么?
(3)点P在什么位置时,MN∥CD?请用小明的作图方法在图1中作出图形(不写作法,保留作图痕迹).
解:(1)如图2,连结OP,由题意可得=,∴∠COM=∠POM,=,∴∠PON=∠DON,∴∠POM+∠PON=∠COM+∠DON=30°,∴∠COD=2∠MON=60°,∴△OCD是等边三角形;(2)不一定,只有当∠COM=15°,CD∥MN,理由:∵∠COM=15°,∠MON=30°,
内容来自帮提分https://www.sfbroad.com转载请标明出处.
相关文档