下载此文档

人教版精品解析:江苏省常州市2021年数学中考真题(解析版).doc


初中 七年级 上学期 数学 人教版

1340阅读234下载28页1.97 MB

下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
下载所得到的文件列表
人教版精品解析:江苏省常州市2021年数学中考真题(解析版).doc
文档介绍:
江苏省常州市2021年数学中考真题
一、选择题(本大题共8小题,每小题2分,共16分.在每小题所给出的四个选项中,只有一项是正确的)
1. 的倒数是(  )
A. 2 B. ﹣2 C. D. ﹣
【答案】A
【解析】
【分析】直接利用倒数的定义即可得出答案.
【详解】解:倒数是2,
故选:A.
【点睛】此题主要考查了倒数,正确掌握相关定义是解题关键.
2. 计算的结果是( )
A. B. C. D.
【答案】B
【解析】
【分析】根据幂的乘方公式,即可求解.
【详解】解:=,
故选B.
【点睛】本题主要考查幂的乘方公式,掌握幂的乘方公式,是解题的关键.
3. 如图是某几何体的三视图,该几何体是( )
A. 正方体 B. 圆锥 C. 圆柱 D. 球
【答案】D
【解析】
【分析】首先根据俯视图将正方体淘汰掉,然后根据主视图和左视图将圆锥和圆柱淘汰,即可求解.
【详解】解:∵俯视图是圆,
∴排除A,
∵主视图与左视图均是圆,
∴排除B、C,
故选:D.
【点睛】此题主要考查了简单几何体的三视图,用到的知识点为:三视图分为主视图、左视图、俯视图,分别是从物体正面、左面和上面看,所得到的图形.
4. 观察所示脸谱图案,下列说法正确的是( )
A. 它是轴对称图形,不是中心对称图形 B. 它是中心对称图形,不是轴对称图形
C. 它既是轴对称图形,也是中心对称图形 D. 它既不是轴对称图形,也不是中心对称图形
【答案】A
【解析】
【分析】根据轴对称图形和中心对称图形的定义,逐一判断选项,即可.
【详解】解:脸谱图案是轴对称图形,不是中心对称图形,
故选A.
【点睛】本题主要考查轴对称和中心对称图形,掌握轴对称和中心对称图形的定义,是解题的关键.
5. 如图,是的直径,是的弦.若,则的度数是( )
A. B. C. D.
【答案】C
【解析】
【分析】先根据平角的定义求出∠AOB,再根据等腰三角形的性质求解,即可.
【详解】解:∵,
∴∠AOB=180°-60°=120°,
∵OA=OB,
∴=∠OBA=(180°-120°)÷2=30°,
故选C.
【点睛】本题主要考查圆基本性质以及等腰三角形的性质,掌握圆的半径相等,是解题的关键.
6. 以下转盘分别被分成2个、4个、5个、6个面积相等的扇形,任意转动这4个转盘各1次.已知某转盘停止转动时,指针落在阴影区域的概率是,则对应的转盘是( )
A.
B.
C.
D.
【答案】D
【解析】
【分析】根据概率公式求出每个选项的概率,即可得到答案.
【详解】解:A.指针落在阴影区域的概率是,
B.指针落在阴影区域的概率是,
C.指针落在阴影区域的概率是,
D.指针落在阴影区域的概率是,
故选D.
【点睛】本题主要考查几何概率,熟练掌握概率公式,是解题的关键.
7. 已知二次函数,当时,y随x增大而增大,则实数a的取值范围是( )
A B. C. D.
【答案】B
【解析】
【分析】根据二次函数的性质,可知二次函数的开口向上,进而即可求解.
【详解】∵二次函数的对称轴为y轴,当时,y随x增大而增大,
∴二次函数的图像开口向上,
∴a-1>0,即:,
故选B.
【点睛】本题主要考查二次函数的性质,掌握二次函数的开口方向与二次项系数的关系,是解题的关键.
8. 为规范市场秩序、保障民生工程,监管部门对某一商品的价格持续监控.该商品的价格(元/件)随时间t(天)的变化如图所示,设(元/件)表示从第1天到第t天该商品的平均价格,则随t变化的图像大致是( )
A. B.
C. D.
【答案】A
【解析】
【分析】根据函数图像先求出关于t的函数解析式,进而求出关于t的解析式,再判断各个选项,即可.
【详解】解:∵由题意得:当1≤t≤6时,=2t+3,
当6<t≤25时,=15,
当25<t≤30时,=-2t+65,
∴当1≤t≤6时,=,
当6<t≤25时,=,
当25<t≤30时,=
= ,
∴当t=30时,=13,符合条件的选项只有A.
故选A.
【点睛】本题主要考查函数图像和函数解析式,掌握待定系数法以及函数图像上点的坐标意义,是解题的关键.
二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接填写在答题卡相应位置上)
9. 计算:___.
【答案】3
【解析】
【详解】试题分
内容来自帮提分https://www.sfbroad.com转载请标明出处.
相关文档