下载此文档

人教版专题18图形的相似与位似(共50题)-2020年中考数学真题分项汇编(解析版)【全国通用】.docx


初中 八年级 上学期 数学 人教版

1340阅读234下载60页430 KB

下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
下载所得到的文件列表
人教版专题18图形的相似与位似(共50题)-2020年中考数学真题分项汇编(解析版)【全国通用】.docx
文档介绍:
2020年中考数学真题分项汇编(全国通用)
专题18图形的相似与位似(共50题)
一.选择题(共18小题)
1.(2020•河北)在如图所示的网格中,以点O为位似中心,四边形ABCD的位似图形是(  )
A.四边形NPMQ B.四边形NPMR C.四边形NHMQ D.四边形NHMR
【分析】由以点O为位似中心,确定出点C对应点M,设网格中每个小方格的边长为1,则OC=5,OM=25,OD=2,OB=10,OA=13,OR=5,OQ=22,OP=210,OH=35,ON=213,由OMOC=2,得点D对应点Q,点B对应点P,点A对应点N,即可得出结果.
【解析】∵以点O为位似中心,
∴点C对应点M,
设网格中每个小方格的边长为1,
则OC=22+12=5,OM=42+22=25,OD=2,OB=32+12=10,OA=32+22=13,OR=22+12=5,OQ=22,OP=62+22=210,OH=62+32=35,ON=62+42=213,
∵OMOC=255=2,
∴点D对应点Q,点B对应点P,点A对应点N,
∴以点O为位似中心,四边形ABCD的位似图形是四边形NPMQ,
故选:A.
2.(2020•重庆)如图,△ABC与△DEF位似,点O为位似中心.已知OA:OD=1:2,则△ABC与△DEF的面积比为(  )
A.1:2 B.1:3 C.1:4 D.1:5
【分析】根据位似图形的概念求出△ABC与△DEF的相似比,根据相似三角形的性质计算即可.
【解析】∵△ABC与△DEF是位似图形,OA:OD=1:2,
∴△ABC与△DEF的位似比是1:2.
∴△ABC与△DEF的相似比为1:2,
∴△ABC与△DEF的面积比为1:4,
故选:C.
3.(2020•遂宁)如图,在平行四边形ABCD中,∠ABC的平分线交AC于点E,交AD于点F,交CD的延长线于点G,若AF=2FD,则BEEG的值为(  )
A.12 B.13 C.23 D.34
【分析】由AF=2DF,可以假设DF=k,则AF=2k,AD=3k,证明AB=AF=2k,DF=DG=k,再利用平行线分线段成比例定理即可解决问题.
【解析】由AF=2DF,可以假设DF=k,则AF=2k,AD=3k,
∵四边形ABCD是平行四边形,
∴AD∥BC,AB∥CD,AB=CD,
∴∠AFB=∠FBC=∠DFG,∠ABF=∠G,
∵BE平分∠ABC,
∴∠ABF=∠CBG,
∴∠ABF=∠AFB=∠DFG=∠G,
∴AB=CD=2k,DF=DG=k,
∴CG=CD+DG=3k,
∵AB∥DG,
∴△ABE∽△CGE,
∴BEEG=ABCG=2k3k=23,
故选:C.
4.(2020•遂宁)如图,在正方形ABCD中,点E是边BC的中点,连接AE、DE,分别交BD、AC于点P、Q,过点P作PF⊥AE交CB的延长线于F,下列结论:
①∠AED+∠EAC+∠EDB=90°,
②AP=FP,
③AE=102AO,
④若四边形OPEQ的面积为4,则该正方形ABCD的面积为36,
⑤CE•EF=EQ•DE.
其中正确的结论有(  )
A.5个 B.4个 C.3个 D.2个
【分析】①正确.证明∠EOB=∠EOC=45°,再利用三角形的外角的性质即可解决问题.
②正确.利用四点共圆证明∠AFP=∠ABP=45°即可.
③正确.设BE=EC=a,求出AE,OA即可解决问题.
④错误,通过计算正方形ABCD的面积为48.
⑤正确.利用相似三角形的性质证明即可.
【解析】如图,连接OE.
∵四边形ABCD是正方形,
∴AC⊥BD,OA=OC=OB=OD,
∴∠BOC=90°,
∵BE=EC,
∴∠EOB=∠EOC=45°,
∵∠EOB=∠EDB+∠OED,∠EOC=∠EAC+∠AEO,
∴∠AED+∠EAC+∠EDO=∠EAC+∠AEO+∠OED+∠EDB=90°,故①正确,
连接AF.
∵PF⊥AE,
∴∠APF=∠ABF=90°,
∴A,P,B,F四点共圆,
∴∠AFP=∠ABP=45°,
∴∠PAF=∠PFA=45°,
∴PA=PF,故②正确,
设BE=EC=a,则AE=5a,OA=OC=OB=OD=2a,
∴AEAO=5a2a=102,即AE=102AO,故③正确,
根据对称性可知,△OPE≌△OQE,
∴S△OEQ=12S四边形OPEQ=2,
∵OB=OD,BE=EC,
∴CD=2OE,OE∥CD,
∴EQDQ=OECD=12,△OEQ∽△CDQ,
内容来自帮提分https://www.sfbroad.com转载请标明出处.
相关文档