下载此文档

人教版易错点9平面向量答案-备战2023年高考数学易错题.docx


高中 高三 上学期 数学 人教版

1340阅读234下载18页1.50 MB

下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
下载所得到的文件列表
人教版易错点9平面向量答案-备战2023年高考数学易错题.docx
文档介绍:
易错点09 平面向量
平面向量是高中数学的重要内容,是解决实际问题强有力的工具,是近年来高考的热点之一.对向量问题的考查,往往与不等式、解析几何、数列、平面几何等知识结合起来.本文通过对近十年全国新课标卷试题进行分析、汇总,希望同学们能够对平面向量的考向、考法、考试题型、难易程度有更加清晰的认识,避免走弯路,错路,以提高复****的效率.
易错点1:忽略零向量;
易错点2:利用向量的数量积计算时,要认真区别向量与实数a·b;
易错点3:利用向量的数量积计算时,判断向量夹角的大小时要牢记“起点相同”;
(1)求夹角的大小:若a,b为非零向量,则由平面向量的数量积公式得(夹角公式),所以平面向量的数量积可以用来解决有关角度的问题.
(2)确定夹角的范围:数量积大于0说明不共线的两向量的夹角为锐角,数量积等于0说明不共线的两向量的夹角为直角,数量积小于0且两向量不共线时两向量的夹角为钝角.
易错点4:向量数量积的几何意义中的叫做在方向上的正射影的数量,它是一个数量,它可正,可负,也可以为0,要注意区分.
易错点5:向量数量积>0并不等价于向量与的夹角为锐角;
易错点6:三点共线问题
1.若A、B、C三点共线,且,则
2.中确定方法
(1)在几何图形中通过三点共线即可考虑使用“爪”字型图完成向量的表示,进而确定
(2)若题目中某些向量的数量积已知,则对于向量方程,可考虑两边对同一向量作数量积运算,从而得到关于的方程,再进行求解
(3)若所给图形比较特殊(矩形,特殊梯形等),则可通过建系将向量坐标化,从而得到关于的方程,再进行求解
3.(1)证明向量共线:对于非零向量a,b,若存在实数λ,使a=λb,则a与b共线.
(2)证明三点共线:若存在实数λ,使,则A,B,C三点共线.
【注】证明三点共线时,需说明共线的两向量有公共点.
易错点7:向量与三角形的综合
(1)进行向量运算时,要尽可能地将它们转化到三角形或平行四边形中,充分利用相等向量、相反向量,三角形的中位线及相似三角形对应边成比例等性质,把未知向量用已知向量表示出来.
(2)向量的线性运算类似于代数多项式的运算,实数运算中的去括号、移项、合并同类项、提取公因式等变形手段在线性运算中同样适用.
(3)用几个基本向量表示某个向量问题的基本技巧:①观察各向量的位置;②寻找相应的三角形或多边形;③运用法则找关系;④化简结果.
题组1:线性运算
1(2018年新课标1卷)在ΔABC中,AD为BC边上的中线,E为AD的中点,则=( )
A. - B. - C. + D. +
【答案】A
【解析】
故选A
2.(2015高考数学新课标1理科)设D为ABC所在平面内一点,则 (  )
A. B.
C. D.
【答案】A
解析:由题知=,故选A.
3.(2014新课标1)设分别为的三边的中点,

A. B. C. D.
【答案】A
【解析】,故选A
4.(2013新课标2理科)已知正方形的边长为,为的中点,则 .
【答案】2
【解析】在正方形中,,,
所以
题组2:共线定理的应用
5.(2021新高考1卷)在正三棱柱中,,点满足,其中,,则
A.当时,的周长为定值
B.当时,三棱锥的体积为定值
C.当时,有且仅有一个点,使得
D.当时,有且仅有一个点,使得平面
【答案】BD
【解析】由点满足,可知点在正方形内.
A选项,当时,可知点在线段(包括端点)上运动.
中,,,,因此周长不为定值,所以选项A错误;
B选项,当时,可知点在线段(包括端点)上运动.
由图可知,线段//平面,即点到平面的距离处处相等,的面积是定值,所以三棱锥的体积为定值,所以选项B正确;
C选项,当时,分别取线段,中点为, ,可知点在线段(包括端点)上运动.很显然若点与或重合时,均满足题意,所以选项C错误.

D选项,当时,分别取线段,中点为,,可知点在线段(包括端点)上运动.此时,有且只有点与点重合时,满足题意. 所以选项D正确.
因此,答案为BD.
6.(2020年江苏卷)在△ABC中,D在边BC上,延长AD到P,使得AP=9,若(m为常数),则CD的长度是________.
【答案】0或.
【解析】∵三点共线,∴可设,∵,
∴,即,
若且,则三点共线,∴,即,
∵,∴,∵,,,∴,
设,,则,.
∴根据余弦定理可得,,
∵,∴,解得,∴的长度为.
当时, ,重合,此时的长度为,
当时,,重合,此时,不合题意,舍去.故答案为
内容来自帮提分https://www.sfbroad.com转载请标明出处.
相关文档