专题11 极坐标与参数方程
一、核心先导
二、考点再现
【考点1】极坐标方程的概念
(1)、极坐标系
如图所示,在平面内取一个定点,叫做极点,自极点引一条射线,叫做极轴;再选定一个长度单位,一个角度单位(通常取弧度)及其正方向(通常取逆时针方向),这样就建立了一个极坐标系.
注:极坐标系以角这一平面图形为几何背景,而平面直角坐标系以互相垂直的两条数轴为几何背景;平面直角坐标系内的点与坐标能建立一一对应的关系,而极坐标系则不可.但极坐标系和平面直角坐标系都是平面坐标系.
(2)、极坐标
设M是平面内一点,极点与点M的距离|OM|叫做点M的极径,记为;以极轴为始边,射线为终边的角叫做点M的极角,记为.有序数对叫做点M的极坐标,记作.
一般地,不作特殊说明时,我们认为可取任意实数.
特别地,当点在极点时,它的极坐标为(0, )(∈R).和直角坐标不同,平面内一个点的极坐标有无数种表示.
如果规定,那么除极点外,平面内的点可用唯一的极坐标表示;同时,极坐标表示的点也是唯一确定的.
常见圆与直线的极坐标方程
曲线
图形
极坐标方程
圆心在极点,半径为的圆
圆心为,半径为的圆
圆心为,半径为的圆
过极点,倾斜角为的直线
(1)
(2)
过点,与极轴垂直的直线
过点,与极轴平行的直线
【考点2】极坐标与直角坐标的互化
(1)、互化背景:把直角坐标系的原点作为极点,x轴的正半轴作为极轴,并在两种坐标系中取相同的长度单位,如图所示:
(2)、互化公式:设是坐标平面内任意一点,它的直角坐标是,极坐标是(),于是极坐标与直角坐标的互化公式如表:
点
直角坐标
极坐标
互化公式
在一般情况下,由确定角时,可根据点所在的象限最小正角.
【考点3】直角的参数方程
直线参数方程中的几何意义的应用:
表示直线上任意一点到定点的距离.
直线参数方程(为参数),椭圆方程,相交于两点,直线上定点
将直线的参数方程带入椭圆方程,得到关于的一元二次方程,则:
若为的中点,则
【考点4】曲线的参数方程
1.圆的参数方程
如图所示,设圆的半径为,点从初始位置出发,按逆时针方向在圆上作匀速圆周运动,设
,则。
这就是圆心在原点,半径为的圆的参数方程,其中的几何意义是转过的角度。
圆心为,半径为的圆的普通方程是,
它的参数方程为:。
2.椭圆的参数方程
以坐标原点为中心,焦点在轴上的椭圆的标准方程为其参数方程为,其中参数称为离心角;焦点在轴上的椭圆的标准方程是其参数方程为其中参数仍为离心角,通常规定参数的范围为∈[0,2)。
【名师提醒】:椭圆的参数方程中,参数的几何意义为椭圆上任一点的离心角,要把它和这一点的旋转角区分开来,除了在四个顶点处,离心角和旋转角数值可相等外(即在到的范围内),在其他任何一点,两个角的数值都不相等。但当时,相应地也有,在其他象限内类似。
3.双曲线的参数方程(了解)
以坐标原点为中心,焦点在轴上的双曲线的标准议程为其参数方程为,其中
焦点在轴上的双曲线的标准方程是其参数方程为
以上参数都是双曲线上任意一点的离心角。
4.抛物线的参数方程
以坐标原点为顶点,开口向右的抛物线的参数方程为
三、考点解密
题型一:函数平移问题与极坐标、参数方程与直角坐标方程的互化
例1.(江西省2022-2023学年高三上学期11月阶段联考检测数学试题(理))在直角坐标系中,曲线经过伸缩变换后得到曲线,以原点O为极点,x轴的正半轴为极轴建立极坐标系,直线l的极坐标方程为:.
(1)写出曲线的参数方程和直线l的直角坐标方程;
(2)已知点P为曲线上一动点,求点P到直线l距离的最小值,并求出取最小值时点P的直角坐标.
【答案】(1)(为参数),
(2)最小值,此时点P的坐标为
【分析】(1)根据伸缩变换的公式,结合两角和的正弦公式、直角坐标方程与极坐标方程互化公式进行求解,
(2)根据参数方程,利用点到直线距离公式,结合辅助角公式进行求解
【详解】(1)由题意,曲线的参数方程为(为参数),经过伸缩变换,
曲线的参数方程为(为参数),
由得:,
化为直角坐标方程为
(2)设,
点P到直线l的距离为,
当时,即,得时,
点P到直线l的距离d取到最小值,
此时,点P的坐标为.
【变式训练1-1】、(2023·全国·高三专题练****在直角坐标系中,曲线:经过伸缩变换后得到曲线,以原点为极点,轴的正半轴