下载此文档

人教考向31直线和圆(重点)-备战2023年高考数学一轮复习考点微专题(全国通用)(解析版).docx


高中 高三 上学期 数学 人教版

1340阅读234下载30页2.13 MB

下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
下载所得到的文件列表
人教考向31直线和圆(重点)-备战2023年高考数学一轮复习考点微专题(全国通用)(解析版).docx
文档介绍:
考向31 直线和圆
1 (2022·北京卷T3)若直线是圆的一条对称轴,则( )
A. B. C. 1 D.
【答案】A
【解析】由题可知圆心为,因为直线是圆的对称轴,所以圆心在直线上,即,解得.
2.(2022·全国甲(文)T14) 设点M在直线上,点和均在上,则的方程为______________.
【答案】
【解析】∵点M在直线上,
∴设点M为,又因为点和均在上,
∴点M到两点的距离相等且为半径R,
∴,
,解得,
∴,,
的方程为.
3.(2022·全国乙理T14(文)T15) 过四点中的三点的一个圆的方程为___________.
【答案】或或或;
【解析】依题意设圆的方程为,
若过,,,则,解得,
所以圆的方程为,即;
若过,,,则,解得,
所以圆的方程为,即;
若过,,,则,解得,
所以圆的方程为,即;
若过,,,则,解得,
所以圆的方程为,即;
4.(2022·新高考Ⅰ卷T14) 写出与圆和都相切的一条直线的方程________________.
【答案】或或
【解析】圆的圆心为,半径为,圆的圆心为,半径为,
两圆圆心距为,等于两圆半径之和,故两圆外切,
如图,
当切线为l时,因为,所以,设方程为
O到l的距离,解得,所以l的方程为,
当切线为m时,设直线方程为,其中,,
由题意,解得,
当切线为n时,易知切线方程为,
5.(2022·新高考Ⅱ卷T15) 已知点,若直线关于的对称直线与圆存在公共点,则实数a的取值范围为________.
【答案】
【解析】关于对称的点的坐标为,在直线上,
所以所在直线即为直线,所以直线为,即;
圆,圆心,半径,
依题意圆心到直线的距离,
即,解得,即;
1.直线与圆的位置关系及常用的两种判断方法
(1)三种位置关系:相交、相切、相离.
(2)两种判断方法:


2.圆与圆的位置关系
设圆O1:(x-a1)2+(y-b1)2=r(r1>0),圆O2:(x-a2)2+(y-b2)2=r(r2>0).
位置
关系
几何法:圆心距d与r1,r2的关系
代数法:两圆方程联立组成方程组的解的情况
外离
d>r1+r2
无解
外切
d=r1+r2
一组实数解
相交
|r1-r2|<d<r1+r2
两组不同的实数解
内切
d=|r1-r2|(r1≠r2)
一组实数解
内含
0≤d<|r1-r2|(r1≠r2)
无解
几何法解决直线与圆的综合问题
(1)处理直线与圆的弦长问题时多用几何法,即弦长的一半、弦心距、半径构成直角三角形.
(2)圆的切线问题的处理要抓住圆心到直线的距离等于半径,从而建立关系解决问题.
1.线段的中点坐标公式
若点P1,P2的坐标分别为(x1,y1),(x2,y2),线段P1P2的中点M的坐标为(x,y),则
2.两直线相交
直线l1:A1x+B1y+C1=0和l2:A2x+B2y+C2=0的公共点的坐标与方程组的解一一对应.
相交⇔方程组有唯一解,交点坐标就是方程组的解;
平行⇔方程组无解;
重合⇔方程组有无数个解.
3.直线与圆相交时,弦心距d,半径r,弦长的一半l满足关系式
4.圆的切线方程常用结论
(1)过圆x2+y2=r2上一点P(x0,y0)的圆的切线方程为x0x+y0y=r2.
(2)过圆(x-a)2+(y-b)2=r2上一点P(x0,y0)的圆的切线方程为(x0-a)(x-a)+(y0-b)(y-b)=r2.
(3)过圆x2+y2=r2外一点M(x0,y0)作圆的两条切线,则两切点所在直线方程为x0x+y0y=r2.
5.两圆相交时公共弦的方程
设圆C1:x2+y2+D1x+E1y+F1=0,①
圆C2:x2+y2+D2x+E2y+F2=0,②
若两圆相交,则有一条公共弦,其公共弦所在直线方程由①-②所得,即(D1-D2)x+(E1-E2)y+(F1-F2)=0.
1.直线的斜率k与倾斜角θ之间的关系
θ

0°<θ<90°
90°
90°<θ<180°
k
0
k>0
不存在
k<0
2.在判断两条直线的位置关系时,首先应分析直线的斜率是否存在,不能忽略直线斜率不存在的情况.
3.在运用两平行直线间的距离公式d=时,一定要注意将两方程中x,y的系数分别化为相同的形式.
4.当两圆相交(切)时,两圆方程(x2,y2项的系数相同)相减便可得公共弦(公切线)所在的直线方程.
5.关注一个直角三角形
内容来自帮提分https://www.sfbroad.com转载请标明出处.
相关文档