下载此文档

人教版高中数学2 第2讲 命题及其关系、充分条件与必要条件 新题培优练.doc


高中 高一 下学期 数学 人教版

1340阅读234下载4页108 KB

下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
下载所得到的文件列表
人教版高中数学2 第2讲 命题及其关系、充分条件与必要条件 新题培优练.doc
文档介绍:
[基础题组练]
1.已知命题p:若x≥a2+b2,则x≥2ab,则下列说法正确的是 (  )
A.命题p的逆命题是“若x<a2+b2,则x<2ab”
B.命题p的逆命题是“若x<2ab,则x<a2+b2”
C.命题p的否命题是“若x<a2+b2,则x<2ab”
D.命题p的否命题是“若x≥a2+b2,则x<2ab”
解析:选C.命题p的逆命题是“若x≥2ab,则x≥a2+b2”,故A,B都错误;命题p的否命题是“若x<a2+b2,则x<2ab”,故C正确,D错误.
2.“若x,y∈R,x2+y2=0,则x,y全为0”的逆否命题是(  )
A.若x,y∈R,x,y全不为0,则x2+y2≠0
B.若x,y∈R,x,y不全为0,则x2+y2=0
C.若x,y∈R,x,y不全为0,则x2+y2≠0
D.若x,y∈R,x,y全为0,则x2+y2≠0
解析:选C.依题意得,原命题的题设为若x2+y2=0,结论为x,y全为零.逆否命题:若x,y不全为零,则x2+y2≠0,故选C.
3.有下列几个命题:
①“若a>b,则>”的否命题;
②“若x+y=0,则x,y互为相反数”的逆命题;
③“若x2<4,则-2<x<2”的逆否命题.
其中真命题的序号是(  )
A.① B.①②
C.②③ D.①②③
解析:选C.①原命题的否命题为“若a≤b,则≤”,假命题;②原命题的逆命题为“若x,y互为相反数,则x+y=0”,真命题;③原命题为真命题,故逆否命题为真命题.所以真命题的序号是②③.
4.设A,B是两个集合,则“A∩B=A”是“A⊆B”的(  )
A.充分不必要条件 B.必要不充分条件
C.充要条件 D.既不充分也不必要条件
解析:选C.由A∩B=A可得A⊆B,由A⊆B可得A∩B=A.所以“A∩B=A”是“A⊆B”的充要条件.故选C.
5.“sin α=cos α”是“cos 2α=0”的(  )
A.充分不必要条件 B.必要不充分条件
C.充要条件 D.既不充分也不必要条件
解析:选A.因为cos 2α=cos2α-sin2α=0,所以sin α=±cos α,所以“sin α=cos α”是“cos 2α=0”的充分不必要条件.故选A.
6.(2019·郑州模拟)设平面向量a,b,c均为非零向量,则“a·(b-c)=0”是“b=c”的(  )
A.充分不必要条件 B.必要不充分条件
C.充分必要条件 D.既不充分也不必要条件
解析:选B.由b=c,得b-c=0,得a·(b-c)=0;反之不成立.故“a·(b-c)=0”是“b=c”的必要不充分条件.
7.(2019·西安八校联考)在△ABC中,“·>0”是“△ABC是钝角三角形”的(  )
A.充分不必要条件 B.必要不充分条件
C.充要条件 D.既不充分也不必要条件
解析:选A.法一:设与的夹角为θ,因为·>0,即||·||cos θ>0,所以cos θ>0,θ<90°,又θ为△ABC内角B的补角,所以∠B>90°,△ABC是钝角三角形;当△ABC为钝角三角形时,∠B不一定是钝角.所以“·>0”是“△ABC是钝角三角形”的充分不必要条件,故选A.
法二:由·>0,得·<0,即cos B<0,所以∠B>90°,△ABC是钝角三角形;当
内容来自帮提分https://www.sfbroad.com转载请标明出处.
相关文档