下载此文档

人教版高中数学第2节 用样本估计总体.doc


高中 高三 上学期 数学 人教版

1340阅读234下载20页524 KB

下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
下载所得到的文件列表
人教版高中数学第2节 用样本估计总体.doc
文档介绍:
第2节 用样本估计总体
考试要求 1.会用统计图表对总体进行估计,会求n个数据的第p百分位数.2.会用数字特征估计总体集中趋势和总体离散程度.
1.总体百分位数的估计
(1)第p百分位数的定义
一般地,一组数据的第p百分位数是这样一个值,它使得这组数据中至少有p%的数据小于或等于这个值,且至少有(100-p)%的数据大于或等于这个值.
(2)计算一组n个数据的第p百分位数的步骤
第1步,按从小到大排列原始数据.
第2步,计算i=n×p%.
第3步,若i不是整数,而大于i的比邻整数为j,则第p百分位数为第j项数据;若i是整数,则第p百分位数为第i项与第(i+1)项数据的平均数.
2.样本的数字特征
(1)众数:一组数据中出现次数最多的那个数据,叫做这组数据的众数.
(2)中位数:把n个数据按大小顺序排列,处于最中间位置的一个数据(或最中间两个数据的平均数)叫做这组数据的中位数.
(3)平均数:把称为a1,a2,…,an这n个数的平均数.
(4)标准差与方差:设一组数据x1,x2,x3,…,xn的平均数为,则这组数据的标准差和方差分别是s=

s2=[(x1-)2+(x2-)2+…+(xn-)2].
1.频率分布直方图与众数、中位数、平均数的关系
(1)最高的小长方形底边中点的横坐标即是众数.
(2)中位数左边和右边的小长方形的面积和是相等的.
(3)平均数是频率分布直方图的“重心”,等于频率分布直方图中每个小长方形的面积乘以小长方形底边中点的横坐标之和.
2.平均数、方差的公式推广
(1)若数据x1,x2,…,xn的平均数为,那么mx1+a,mx2+a,mx3+a,…,mxn+a的平均数是m+a.
(2)若数据x1,x2,…,xn的方差为s2,那么
①数据x1+a,x2+a,…,xn+a的方差也为s2;
②数据ax1,ax2,…,axn的方差为a2s2.
1.思考辨析(在括号内打“√”或“×”)
(1)对一组数据来说,平均数和中位数总是非常接近.(  )
(2)在频率分布直方图中,最高的小长方形底边中点的横坐标是众数.(  )
(3)方差与标准差具有相同的单位.(  )
(4)如果一组数中每个数减去同一个非零常数,则这组数的平均数改变,方差不变.(  )
答案 (1)× (2)√ (3)× (4)√
解析 (1)平均数指的是这组数据的平均水平;中位数指的是这组数据的中间水平,它们之间没有必然联系,故该说法错误.
(3)方差是标准差的平方,故它们单位不一样.
2.下列一组数据的第25百分位数是(  )
2.1,3.0,3.2,3.8,3.4,4.0,4.2,4.4,5.3,5.6
A.3.2 B.3.0 C.4.4 D.2.5
答案 A
解析 把该组数据按照由小到大排列,可得:
2.1,3.0,3.2,3.4,3.8,4.0,4.2,4.4,5.3,5.6,
由i=10×25%=2.5,不是整数,则第3个数据3.2是第25百分位数.
3.(2020·全国Ⅲ卷)设一组样本数据x1,x2,…,xn的方差为0.01,则数据10x1,10x2,…,10xn的方差为(  )
A.0.01 B.0.1 C.1 D.10
答案 C
解析 10x1,10x2,…,10xn的方差为102×0.01=1.
4.(多选)(2021·新高考Ⅰ卷)有一组样本数据x1,x2,…,xn,由这组数据得到新样本数据y1,y2,…,yn,其中yi=xi+c(i=1,2,…,n),c为非零常数,则(  )
A.两组样本数据的样本平均数相同
B.两组样本数据的样本中位数相同
C.两组样本数据的样本标准差相同
D.两组样本数据的样本极差相同
答案 CD
解析 设样本数据x1,x2,…,xn的平均数、中位数、标准差、极差分别为,m,σ,t,依题意得,新样本数据y1,y2,…,yn的平均数、中位数、标准差、极差分别为+c,m+c,σ,t,因为c≠0,所以A,B不正确,C,D正确.
5.(易错题)一组数据的平均数是28,方差是4,若将这组数据的每一个数据都加上20,得到一组新数据,则所得新数据的平均数是________,方差是________.
答案 48 4
解析 设该组数据为x1,x2,…,xn,
则新数据为x1+20,x2+20,…,xn+20,记新数据的平均数为′,
因为==28,
所以′==20+28=48.
因为s2=[(x1-)2+(x2-)2+…+(xn-)2]=4,
所以s′2={[x1+20-(+20)]2+[x2+20-(+20)]2+…+[xn+20-(+20)]2}=s2=4.
内容来自帮提分https://www.sfbroad.com转载请标明出处.
相关文档