[基础题组练]
1.若直线l不平行于平面α,且l⊄α,则( )
A.α内的所有直线与l异面
B.α内不存在与l平行的直线
C.α与直线l至少有两个公共点
D.α内的直线与l都相交
解析:选B.因为l⊄α,直线l不平行于平面α,所以直线l只能与平面α相交,于是直线l与平面α只有一个公共点,所以平面α内不存在与l平行的直线.
2.(2020·大连双基测试)已知直线l,m,平面α,β,γ,则下列条件能推出l∥m的是( )
A.l⊂α,m⊂β,α∥β B.α∥β,α∩γ=l,β∩γ=m
C.l∥α,m⊂α D.l⊂α,α∩β=m
解析:选B.选项A中,直线l,m也可能异面;选项B中,根据面面平行的性质定理,可推出l∥m,B正确;选项C中,直线l,m也可能异面;选项D中,直线l,m也可能相交,故选B.
3.(2020·长沙市统一模拟考试)设a,b,c表示不同直线,α,β表示不同平面,下列命题:
①若a∥c,b∥c,则a∥b;②若a∥b,b∥α,则a∥α;③若a∥α,b∥α,则a∥b;④若a⊂α,b⊂β,α∥β,则a∥b.
真命题的个数是( )
A.1 B.2
C.3 D.4
解析:选A.由题意,对于①,根据线线平行的传递性可知①是真命题;对于②,根据a∥b,b∥α,可以推出a∥α或a⊂α,故②是假命题;对于③,根据a∥α,b∥α,可以推出a与b平行、相交或异面,故③是假命题;对于④,根据a⊂α,b⊂β.α∥β,可以推出a∥b或a与b异面,故④是假命题,所以真命题的个数是1,故选A.
4.如图所示,在空间四边形ABCD中,E,F分别为边AB,AD上的点,且AE∶EB=AF∶FD=1∶4,又H,G分别为BC,CD的中点,则( )
A.BD∥平面EFGH,且四边形EFGH 是矩形
B.EF∥平面BCD,且四边形EFGH是梯形
C.HG∥平面ABD,且四边形EFGH是菱形
D.EH∥平面ADC,且四边形EFGH是平行四边形
解析:选B.由AE∶EB=AF∶FD=1∶4知EFBD,又EF⊄平面BCD,所以EF∥平面BCD.又H,G分别为BC,CD的中点,所以HGBD,所以EF∥HG且EF≠HG.所以四边形EFGH是梯形.
5.在正方体ABCDA1B1C1D1中,E,F,G分别是A1B1,B1C1,BB1的中点,给出下列四个推断:
①FG∥平面AA1D1D;②EF∥平面BC1D1;③FG∥平面BC1D1;④平面EFG∥平面BC1D1.
其中推断正确的序号是( )
A.①③ B.①④
C.②③ D.②④
解析:选A.因为在正方体ABCDA1B1C1D1中,E,F,G分别是A1B1,B1C1,BB1的中点,所以FG∥BC1,因为BC1∥AD1,所以FG∥AD1,
因为FG⊄平面AA1D1D,AD1⊂平面AA1D1D,所以FG∥平面AA1D1D,故①正确;
因为EF∥A1C1,A1C1与平面BC1D1相交,所以EF与平面BC1D1相交,故②错误;
因为E,F,G分别是A1B1,B1C1,BB1的中点,
所以FG∥BC1,因为FG⊄平面BC1D1,BC1⊂平面BC1D1,
所以FG∥平面BC1D1,故③正确;
因为EF与平面BC1D1相交,所以平面EF