下载此文档

人教版高中数学第4讲 数列求和0.doc


高中 高三 上学期 数学 人教版

1340阅读234下载6页457 KB

下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
下载所得到的文件列表
人教版高中数学第4讲 数列求和0.doc
文档介绍:
第4讲 数列求和
一、选择题
1.等差数列{an}的通项公式为an=2n+1,其前n项和为Sn,则数列的前10项的和为(  )
A.120 B.70 C.75 D.100
解析 因为=n+2,所以的前10项和为10×3+=75.
答案 C
2.数列{an}的前n项和为Sn,已知Sn=1-2+3-4+…+(-1)n-1·n,则S17=(  )
A.9 B.8 C.17 D.16
解析 S17=1-2+3-4+5-6+…+15-16+17=1+(-2+3)+(-4+5)+(-6+7)+…+(-14+15)+(-16+17)=1+1+1+…+1=9.
答案 A
3.数列{an}的通项公式为an=(-1)n-1·(4n-3),则它的前100项之和S100等于(  )
A.200 B.-200 C.400 D.-400
解析 S100=(4×1-3)-(4×2-3)+(4×3-3)-…-(4×100-3)=4×[(1-2)+(3-4)+…+(99-100)]=4×(-50)=-200.
答案 B
4.(2017·高安中学模拟)已知数列5,6,1,-5,…,该数列的特点是从第二项起,每一项都等于它的前后两项之和,则这个数列的前16项之和S16等于(  )
A.5 B.6 C.7 D.16
解析 根据题意这个数列的前7项分别为5,6,1,-5,-6,-1,5,6,发现从第7项起,数字重复出现,所以此数列为周期数列,且周期为6,前6项和为5+6+1+(-5)+(-6)+(-1)=0.
又因为16=2×6+4,所以这个数列的前16项之和S16=2×0+7=7.故选C.
答案 C
5.已知数列{an}满足a1=1,an+1·an=2n(n∈N*),则S2 016=(  )
A.22 016-1 B.3·21 008-3
C.3·21 008-1 D.3·21 007-2
解析 a1=1,a2==2,又==2.∴=2.∴a1,a3,a5,…成等比数列;a2,a4,a6,…成等比数列,
∴S2 016=a1+a2+a3+a4+a5+a6+…+a2 015+a2 016
=(a1+a3+a5+…+a2 015)+(a2+a4+a6+…+a2 016)
=+=3·21 008-3.故选B.
答案 B
二、填空题
6.(2017·保定模拟)有穷数列1,1+2,1+2+4,…,1+2+4+…+2n-1所有项的和为________.
解析 由题意知所求数列的通项为=2n-1,故由分组求和法及等比数列的求和公式可得和为-n=2n+1-2-n.
答案 2n+1-2-n
7.(2016·宝鸡模拟)数列{an}满足an+an+1=(n∈N*),且a1=1,Sn是数列{an}的前n项和,则S21=________.
解析 由an+an+1==an+1+an+2,∴an+2=an,
则a1=a3=a5=…=a21,a2=a4=a6=…=a20,
∴S21=a1+(a2+a3)+(a4+a5)+…+(a20+a21)
=1+10×=6.
答案 6
8.(2017·安阳二模)已知数列{an}中,an=-4n+5,等比数列{bn}的公比q满足q=an-an-
内容来自帮提分https://www.sfbroad.com转载请标明出处.
相关文档