下载此文档

2024年高考数学一轮复习(人教版) 第2章 §2.4 函数的对称性.docx


高中 高三 上学期 数学 人教版

1340阅读234下载10页192 KB

下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
下载所得到的文件列表
2024年高考数学一轮复习(人教版) 第2章 §2.4 函数的对称性.docx
文档介绍:
§2.4 函数的对称性
考试要求 1.能通过平移,分析得出一般的轴对称和中心对称公式和推论.2.会利用对称公式解决问题.
知识梳理
1.奇函数、偶函数的对称性
(1)奇函数关于原点对称,偶函数关于y轴对称.
(2)若f(x-2)是偶函数,则函数f(x)图象的对称轴为x=-2;若f(x-2)是奇函数,则函数f(x)图象的对称中心为(-2,0).
2.若函数y=f(x)的图象关于直线x=a对称,则f(a-x)=f(a+x);
若函数y=f(x)满足f(a-x)=-f(a+x),则函数的图象关于点(a,0)对称.
3.两个函数图象的对称
(1)函数y=f(x)与y=f(-x)关于y轴对称;
(2)函数y=f(x)与y=-f(x)关于x轴对称;
(3)函数y=f(x)与y=-f(-x)关于原点对称.
思考辨析
判断下列结论是否正确(请在括号中打“√”或“×”)
(1)函数y=f(x+1)是偶函数,则函数y=f(x)的图象关于直线x=1对称.( √ )
(2)函数y=f(x-1)是奇函数,则函数y=f(x)的图象关于点(1,0)对称.( × )
(3)若函数f(x)满足f(x-1)+f(x+1) =0,则f(x)的图象关于y轴对称.( × )
(4)若函数f(x)满足f(2+x)=f(2-x),则f(x)的图象关于直线x=2对称.( √ )
教材改编题
1.函数f(x)=图象的对称中心为(  )
A.(0,0) B.(0,1)
C.(1,0) D.(1,1)
答案 B
解析 因为f(x)==1+,由y=向上平移一个单位长度得到y=1+,又y=关于(0,0)对称,
所以f(x)=1+的图象关于(0,1)对称.
2.已知定义在R上的函数f(x)在[-2,+∞)上单调递减,且f(-2-x)=f(-2+x),则f(-4)与f(1)的大小关系为________.
答案 f(-4)>f(1)
解析 ∵f(-2-x)=f(-2+x),
∴f(x)关于直线x=-2对称,
又f(x)在[-2,+∞)上单调递减,
∴f(-4)=f(0)>f(1),
故f(-4)>f(1).
3.偶函数y=f(x)的图象关于直线x=2对称,且当x∈[2,3]时,f(x)=2x-1,则f(-1)=________.
答案 5
解析 ∵f(x)为偶函数,
∴f(-1)=f(1),
由f(x)的图象关于x=2对称,
可得f(1)=f(3)=2×3-1=5.
题型一 轴对称问题
例1 (1)已知定义在R上的函数f(x)是奇函数,对x∈R都有f(x+1)=f(1-x),当f(-3)=-2时,则f(2 023)等于(  )
A.-2 B.2 C.0 D.-4
答案 B
解析 定义在R上的函数f(x)是奇函数,且对x∈R都有f(x+1)=f(1-x),
故函数f(x)的图象关于直线x=1对称,
∴f(x)=f(2-x),
故f(-x)=f(2+x)=-f(x),
∴f(x)=-f(2+x)=f(4+x),
∴f(x)是周期为4的周期函数.
则f(2 023)=f(505×4+3)=f(3)=-f(-3)=2.
(2)已知函数f(x)的定义域为R,且f(x+2)为偶函数,f(x)在[2,+∞
内容来自帮提分https://www.sfbroad.com转载请标明出处.
相关文档