下载此文档

2024年高考数学一轮复习(人教版) 第3章 §3.1 导数的概念及其意义、导数的运算.docx


高中 高三 上学期 数学 人教版

1340阅读234下载15页1.13 MB

下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
下载所得到的文件列表
2024年高考数学一轮复习(人教版) 第3章 §3.1 导数的概念及其意义、导数的运算.docx
文档介绍:
§3.1 导数的概念及其意义、导数的运算
考试要求 1.了解导数的概念、掌握基本初等函数的导数.2.通过函数图象,理解导数的几何意义.3.能够用导数公式和导数的运算法则求简单函数的导数,能求简单的复合函数(形如f(ax+b))的导数.
知识梳理
1.导数的概念
(1)函数y=f(x)在x=x0处的导数记作f′(x0)或y′|.
f′(x0)= = .
(2)函数y=f(x)的导函数(简称导数)
f′(x)=y′= .
2.导数的几何意义
函数y=f(x)在x=x0处的导数的几何意义就是曲线y=f(x)在点P(x0,f(x0))处的切线的斜率,相应的切线方程为y-f(x0)=f′(x0)(x-x0).
3.基本初等函数的导数公式
基本初等函数
导函数
f(x)=c(c为常数)
f′(x)=0
f(x)=xα(α∈R,且α≠0)
f′(x)=αxα-1
f(x)=sin x
f′(x)=cos x
f(x)=cos x
f′(x)=-sin x
f(x)=ax(a>0,且a≠1)
f′(x)=axln a
f(x)=ex
f′(x)=ex
f(x)=logax(a>0,且a≠1)
f′(x)=
f(x)=ln x
f′(x)=
4.导数的运算法则
若f′(x),g′(x)存在,则有
[f(x)±g(x)]′=f′(x)±g′(x);
[f(x)g(x)]′=f′(x)g(x)+f(x)g′(x);
′=(g(x)≠0);
[cf(x)]′=cf′(x).
5.复合函数的定义及其导数
复合函数y=f(g(x))的导数与函数y=f(u),u=g(x)的导数间的关系为yx′=yu′·ux′,即y对x的导数等于y对u的导数与u对x的导数的乘积.
常用结论
1.区分在点处的切线与过点处的切线
(1)在点处的切线,该点一定是切点,切线有且仅有一条.
(2)过点处的切线,该点不一定是切点,切线至少有一条.
2.′=(f(x)≠0).
思考辨析
判断下列结论是否正确(请在括号中打“√”或“×”)
(1)f′(x0)是函数y=f(x)在x=x0附近的平均变化率.( × )
(2)与曲线只有一个公共点的直线一定是曲线的切线.( × )
(3)f′(x0)=[f(x0)]′.( × )
(4)(cos 2x) ′=-2sin 2x.( √ )
教材改编题
1.若函数f(x)=3x+sin 2x,则(  )
A.f′(x)=3xln 3+2cos 2x
B.f′(x)=3x+2cos 2x
C.f′(x)=+cos 2x
D.f′(x)=-2cos 2x
答案 A
解析 因为函数f(x)=3x+sin 2x,
所以f′(x)=3xln 3+2cos 2x.
2.函数f(x)=ex+在x=1处的切线方程为 .
答案 y=(e-1)x+2
解析 由题意得,f′(x)=ex-,∴f′(1)=e-1,
又∵f(1)=e+1,
∴切点为(1,e+1),切线斜率k=f′(1)=e-1,
即切线方程为y-(e+1)=(e-1)(x-1),
即y=(e-1)x+2.
3.已知函数f(x)=xln x+ax2+2,若f′(e)=0,则a= .
答案 -
解析 由题意得f′(x)=1+ln x+2ax,
∴f′(e)=2ae+2=0,解得a=-.
题型一 导数的运算
例1 (1)(多选)下列求导正确的是(  )
A.[(3x+5)3]′=9(3x+5)2
B.(x3ln x)′=3x2ln x+x2
C.′=
D.(2x+cos x)′=2xln 2-sin x
答案 ABD
解析 对于A,[(3x+5)3]′=3(3x+5)2(3x+5)′=9(3x+5)2,故A正确;
对于B,(x3ln x)′=(x3)′ln x+x3(ln x)′=3x2ln x+x2,故B正确;
对于C,′==,故C错误;
对于D,(2x+cos x)′=(2x)′+(cos x)′=2xln 2-sin x,故D正确.
(2)已知函数f(x)的导函数为f′(x),且满足f(x)=x3+x2f′(1)+2x-1,则f′(2)等于(  )
A.1 B.-9 C.-6 D.4
答案 C
解析 因为f(x)=x3+x2f′(1)+2x-1,
所以f′(x)=3x2+2xf′(1)+2,
把x=1代入f′(x),
得f′(1)=3×12+2f′(1)+2,解得f′(1)=-5,
所以f′(x)=3x2-10x+2,所以f′(2)=-6.
思维升华 (1)求函数的导数要准确地把函
内容来自帮提分https://www.sfbroad.com转载请标明出处.
相关文档