下载此文档

人教版高中数学第3讲 利用导数研究函数的单调性、极值、最值(解析版).docx


高中 高三 上学期 数学 人教版

1340阅读234下载45页2.80 MB

下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
下载所得到的文件列表
人教版高中数学第3讲 利用导数研究函数的单调性、极值、最值(解析版).docx
文档介绍:
第3讲 利用导数研究函数的单调性、极值、最值
目录
第一部分:知识强化
第二部分:重难点题型突破
突破一:导数的几何意义
突破二:利用导数研究函数的单调性
角度1:利用导数求函数的单调区间(不含参)
角度2:已知函数在区间上单调
角度3:已知函数在区间上存在单调区间
角度4:已知函数在区间上不单调
角度5:已知函数有三个单调区间
突破三:利用导数研究函数的极值与最值
角度1:求已知函数的极值(点)、最值
角度2:根据函数的极值(点)、最值,求参数
突破四:含参问题讨论单调性
角度1:导函数有效部分是一次型(或可化为一次型)
角度2:导函数有效部分是二次型(或可化为二次型)且可因式分解型
角度3:导函数有效部分是二次型(或可化为二次型)且不可因式分解型
第三部分:冲刺重难点特训
第一部分:知识强化
1、导数的几何意义
函数在点处的导数的几何意义,就是曲线在点处的切线的斜率,即
,相应的切线方程为.
(1)在型求切线方程
已知:函数的解析式.计算:函数在或者处的切线方程.
步骤:第一步:计算切点的纵坐标(方法:把代入原函数中),切点.
第二步:计算切线斜率.
第三步:计算切线方程.切线过切点,切线斜率。
根据直线的点斜式方程得到切线方程:.
(2)过型求切线方程
已知:函数的解析式.计算:过点(无论该点是否在上)的切线方程.
步骤:第一步:设切点
第二步:计算切线斜率;计算切线斜率;
第三步:令:,解出,代入求斜率
第三步:计算切线方程.根据直线的点斜式方程得到切线方程:.
2、利用导数研究函数的单调性
(1)求已知函数(不含参)的单调区间
①求的定义域
②求
③令,解不等式,求单调增区间
④令,解不等式,求单调减区间
注:求单调区间时,令(或)不跟等号.
(2)已知函数在区间上单调
①已知在区间上单调递增,恒成立.
②已知在区间上单调递减,恒成立.
注:已知单调性,等价条件中的不等式含等号.
(3)已知函数在区间上存在单调区间
①已知在区间上存在单调增区间,有解.
②已知在区间上存在单调减区间,有解.
(4)已知函数在区间上不单调,使得(是变号零点)
3、函数的极值
一般地,对于函数,
(1)若在点处有,且在点附近的左侧有,右侧有,则称为的极小值点,叫做函数的极小值.
(2)若在点处有,且在点附近的左侧有,右侧有,则称为的极大值点,叫做函数的极大值.
(3)极小值点与极大值点通称极值点,极小值与极大值通称极值.
注:极大(小)值点,不是一个点,是一个数.
4、函数的最大(小)值
一般地,如果在区间上函数的图象是一条连续不断的曲线,那么它必有最大值与最小值.
设函数在上连续,在内可导,求在上的最大值与最小值的步骤为:
(1)求在内的极值;
(2)将函数的各极值与端点处的函数值,比较,其中最大的一个是最大值,最小的一个是最小值.
5、函数的最值与极值的关系
(1)极值是对某一点附近(即局部)而言,最值是对函数的定义区间的整体而言;
(2)在函数的定义区间内,极大(小)值可能有多个(或者没有),但最大(小)值只有一个(或者没有);
(3)函数的极值点不能是区间的端点,而最值点可以是区间的端点;
(4)对于可导函数,函数的最大(小)值必在极大(小)值点或区间端点处取得.
第二部分:重难点题型突破
突破一:导数的几何意义
1.(2022·全国·模拟预测)已知函数,则过点可作曲线的切线的条数为(    )
A.0 B.1 C.2 D.3
【答案】C
【详解】解:因为,所以,
设切点为,
所以在切点处的切线方程为,
又在切线上,所以,
即,
整理得,解得或,
所以过点可作曲线的切线的条数为2.
故选:C.
2.(2022·河南河南·模拟预测(理))已知是奇函数,则过点向曲线可作的切线条数是(   )
A.1 B.2 C.3 D.不确定
【答案】C
【详解】因函数是奇函数,则由得恒成立,则,
即有,,
设过点向曲线所作切线与曲线相切的切点为,
而点不在曲线上,则,整理得,
即,解得或,即符合条件的切点有3个,
所以过点向曲线可作的切线条数是3.
故选:C
3.(2022·江苏南通·模拟预测)已知过点作曲线的切线有且仅有条,则(    )
A. B. C.或 D.或
【答案】C
【详解】设切点为,
由已知得,则切线斜率,切线方程为
直线过点,则,化简得
切线有且仅有条,即,化简得,即,解得或
故选:C
4.(2022·河南省淮阳中学模拟预测(理))已知,过原点作曲线的切线,则切点的横坐标为(    )
A
内容来自帮提分https://www.sfbroad.com转载请标明出处.
相关文档