下载此文档

人教高中数学第6章 §6.1 数列的概念.docx


高中 高三 上学期 数学 人教版

1340阅读234下载18页1.42 MB

下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
下载所得到的文件列表
人教高中数学第6章 §6.1 数列的概念.docx
文档介绍:
§6.1 数列的概念
考试要求 1.了解数列的概念和几种简单的表示方法(列表、图象、通项公式).2.了解数列是自变量为正整数的一类特殊函数.
知识梳理
1.数列的定义
按照确定的顺序排列的一列数称为数列,数列中的每一个数叫做这个数列的项.
2.数列的分类
分类标准
类型
满足条件
项数
有穷数列
项数有限
无穷数列
项数无限
项与项间的大小关系
递增数列
an+1>an
其中n∈N*
递减数列
an+1<an
常数列
an+1=an
摆动数列
从第二项起,有些项大于它的前一项,有些项小于它的前一项的数列
3.数列的通项公式
如果数列{an}的第n项an与它的序号n之间的对应关系可以用一个式子来表示,那么这个式子叫做这个数列的通项公式.
4.数列的递推公式
如果一个数列的相邻两项或多项之间的关系可以用一个式子来表示,那么这个式子叫做这个数列的递推公式.
常用结论
1.已知数列{an}的前n项和Sn,则an=
2.在数列{an}中,若an最大,则(n≥2,n∈N*);若an最小,则(n≥2,n∈N*).
思考辨析
判断下列结论是否正确(请在括号中打“√”或“×”)
(1)相同的一组数按不同顺序排列时都表示同一个数列.( × )
(2)1,1,1,1,…,不能构成一个数列.( × )
(3)任何一个数列不是递增数列,就是递减数列.( × )
(4)如果数列{an}的前n项和为Sn,则对任意n∈N*,都有an+1=Sn+1-Sn.( √ )
教材改编题
1.若数列{an}满足a1=2,an+1=,则a2 023的值为(  )
A.2 B.-3 C.- D.
答案 C
解析 因为a1=2,an+1=,
所以a2==-3,
同理可得a3=-,a4=,a5=2,…,
可得an+4=an,则a2 023=a505×4+3=a3=-.
2.数列,,,,,…的通项公式是an=________.
答案 ,n∈N*
解析 ∵a1==,
a2==,
a3==,
a4==,
a5==,
∴通过观察,我们可以得到如上的规律,
则an=,n∈N*.
3.已知数列{an}的前n项和Sn=2n2-3n,则数列{an}的通项公式an=________.
答案 4n-5
解析 a1=S1=2-3=-1,
当n≥2时,an=Sn-Sn-1
=(2n2-3n)-[2(n-1)2-3(n-1)]
=4n-5,
因为a1也适合上式,所以an=4n-5.
题型一 由an与Sn的关系求通项公式
例1 (1)设Sn为数列{an}的前n项和,若2Sn=3an-3,则a4等于(  )
A.27 B.81
C.93 D.243
答案 B
解析 根据2Sn=3an-3,
可得2Sn+1=3an+1-3,
两式相减得2an+1=3an+1-3an,
即an+1=3an,
当n=1时,2S1=3a1-3,解得a1=3,
所以数列{an}是以3为首项,3为公比的等比数列,
所以a4=a1q3=34=81.
(2)设数列{an}满足a1+3a2+…+(2n-1)an=2n,则an=________.
答案 
解析 当n=1时,a1=21=2.
∵a1+3a2+…+(2n-1)an=2n,①
∴a1+3a2+…+(2n-3)an-1=2n-1(n≥2),②
由①-②得,(2n-1)·an=2n-2n-1=2n-1,
∴an=(n≥2).
显然n=1时不满足上式,∴an=
教师备选
1.已知数列{an}的前n项和Sn=n2+2n,则an=________.
答案 2n+1
解析 当n=1时,a1=S1=3.当n≥2时,an=Sn-Sn-1=n2+2n-[(n-1)2+2(n-1)]=2n+1.由于a1=3适合上式,∴an=2n+1.
2.已知数列{an}中,Sn是其前n项和,且Sn=2an+1,则数列的通项公式an=________.
答案 -2n-1
解析 当n=1时,a1=S1=2a1+1,
∴a1=-1.
当n≥2时,Sn=2an+1,①
Sn-1=2an-1+1.②
①-②得Sn-Sn-1=2an-2an-1,
即an=2an-2an-1,
即an=2an-1(n≥2),
∴{an}是首项为a1=-1,公比为q=2的等比数列.
∴an=a1·qn-1=-2n-1.
思维升华 (1)已知Sn求an的常用方法是利用an=转化为关于an的关系式,再求通项公式.
(2)Sn与an关系问题的求解思路
方向1:利用an=Sn-Sn-1(n≥2
内容来自帮提分https://www.sfbroad.com转载请标明出处.
相关文档