下载此文档

人教高中数学第7章 §7.1 基本立体图形、简单几何体的表面积与体积.docx


高中 高三 上学期 数学 人教版

1340阅读234下载22页2.77 MB

下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
下载所得到的文件列表
人教高中数学第7章 §7.1 基本立体图形、简单几何体的表面积与体积.docx
文档介绍:
§7.1 基本立体图形、简单几何体的表面积与体积
考试要求 1.认识柱、锥、台、球及简单组合体的结构特征,能运用这些特征描述现实生活中简单物体的结构.2.知道球、棱(圆)柱、棱(圆)锥、棱(圆)台的表面积和体积的计算公式,并能解决简单的实际问题.3.能用斜二测画法画出简单空间图形的直观图.
知识梳理
1.空间几何体的结构特征
(1)多面体的结构特征
名称
棱柱
棱锥
棱台
图形
底面
互相平行
且全等
多边形
互相平行
且相似
侧棱
平行且相等
相交于一点
但不一定相等
延长线交
于一点
侧面形状
平行四边形
三角形
梯形
(2)旋转体的结构特征
名称
圆柱
圆锥
圆台

图形
母线
互相平行且相等,垂直于底面
相交于一点
延长线交于一点
轴截面
矩形
等腰三角形
等腰梯形

侧面展开图
矩形
扇形
扇环
2.直观图
(1)画法:常用斜二测画法.
(2)规则:
①原图形中x轴、y轴、z轴两两垂直,直观图中,x′轴、y′轴的夹角为45°或135°,z′轴与x′轴和y′轴所在平面垂直.
②原图形中平行于坐标轴的线段,直观图中仍分别平行于坐标轴,平行于x轴和z轴的线段在直观图中保持原长度不变,平行于y轴的线段长度在直观图中变为原来的一半.
3.圆柱、圆锥、圆台的侧面展开图及侧面积公式
圆柱
圆锥
圆台
侧面展开图
侧面积公式
S圆柱侧=2πrl
S圆锥侧=πrl
S圆台侧=π(r1+r2)l
4.柱、锥、台、球的表面积和体积
   名称
几何体  
表面积
体积
柱体
S表=S侧+2S底
V=Sh
锥体
S表=S侧+S底
V=Sh
台体
S表=S侧+S上+S下
V=(S上+S下+)h

S表=4πR2
V=πR3
常用结论
1.与体积有关的几个结论
(1)一个组合体的体积等于它的各部分体积的和或差.
(2)底面面积及高都相等的两个同类几何体的体积相等.
2.直观图与原平面图形面积间的关系:S直观图=S原图形.
思考辨析
判断下列结论是否正确(请在括号中打“√”或“×”)
(1)有两个面平行,其余各面都是平行四边形的几何体是棱柱.( × )
(2)用一个平行于底面的平面截圆锥,得到一个圆锥和一个圆台.( √ )
(3)菱形的直观图仍是菱形.( × )
(4)两个球的体积之比等于它们的半径比的平方.( × )
教材改编题
1.如图,长方体ABCD-A′B′C′D′被截去一部分,其中EH∥A′D′,剩下的几何体是(  )
A.棱台 B.四棱柱
C.五棱柱 D.六棱柱
答案 C
2.已知圆锥的表面积等于12π cm2,其侧面展开图是一个半圆,则底面圆的半径为(  )
A.1 cm B.2 cm C.3 cm D. cm
答案 B
解析 设圆锥的底面圆的半径为r,母线长为l,因为侧面展开图是一个半圆,所以πl=2πr,即l=2r,所以πr2+πrl=πr2+πr·2r=3πr2=12π,解得r=2.
3.如图,将一个长方体用过相邻三条棱的中点的平面截出一个棱锥,则该棱锥的体积与剩下的几何体体积的比为________.
答案 1∶47
解析 设长方体的相邻三条棱长分别为a,b,c,它截出的棱锥的体积为V1=××a×b×
c=abc,剩下的几何体的体积V2=abc-abc=abc,所以V1∶V2=1∶47.
题型一 基本立体图形
命题点1 结构特征
例1 下列命题正确的是(  )
A.在圆柱的上、下底面的圆周上各取一点,则这两点的连线是圆柱的母线
B.直角三角形绕其任意一边所在直线旋转一周所形成的几何体都是圆锥
C.棱台的上、下底面可以不相似,但侧棱长一定相等
D.直角梯形以一条直角腰所在的直线为旋转轴,其余三边旋转形成的面所围成的旋转体是圆台
答案 D
解析 A不一定,只有当这两点的连线垂直于底面时才是母线;
B不一定,当以斜边所在直线为旋转轴时,其余两边旋转形成的面所围成的几何体不是圆锥.如图所示,它是由两个同底圆锥组成的几何体;
C错误,棱台的上、下底面相似且对应边互相平行.棱台的各侧棱延长线交于一点,但是这些侧棱的长不一定相等.
教师备选
(多选)下列说法错误的是(  )
A.有一个面是多边形,其余各面都是三角形,由这些面围成的多面体是棱锥
B.有两个面平行且相似,其余各面都是梯形的多面体是棱台
C.如果一个棱锥的各个侧面都是等边三角形,那么这个棱锥可能为六棱锥
D
内容来自帮提分https://www.sfbroad.com转载请标明出处.
相关文档