下载此文档

人教高中数学第8章 §8.8 抛物线.docx


高中 高三 上学期 数学 人教版

1340阅读234下载23页744 KB

下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
下载所得到的文件列表
人教高中数学第8章 §8.8 抛物线.docx
文档介绍:
§8.8 抛物线
考试要求 1.掌握抛物线的定义、几何图形、标准方程.2.掌握抛物线的简单几何性质(范围、对称性、顶点、离心率).3.了解抛物线的简单应用.
知识梳理
1.抛物线的概念
把平面内与一个定点F和一条定直线l(l不经过点F)的距离相等的点的轨迹叫做抛物线,点F叫做抛物线的焦点,直线l叫做抛物线的准线.
2.抛物线的标准方程和简单几何性质
标准方程
y2=2px(p>0)
y2=-2px(p>0)
x2=2py(p>0)
x2=-2py(p>0)
图形
范围
x≥0,y∈R
x≤0,y∈R
y≥0,x∈R
y≤0,x∈R
焦点
准线方程
x=-
x=
y=-
y=
对称轴
x轴
y轴
顶点
(0,0)
离心率
e=1
常用结论
抛物线焦点弦的几个常用结论
设AB是过抛物线y2=2px(p>0)的焦点F的弦,若A(x1,y1),B(x2,y2),则
(1)x1x2=,y1y2=-p2;
(2)若A在第一象限,B在第四象限,则|AF|=,|BF|=,弦长|AB|=x1+x2+p=(α为弦AB的倾斜角);
(3)+=;
(4)以弦AB为直径的圆与准线相切;
(5)以AF或BF为直径的圆与y轴相切;
(6)过焦点弦的端点的切线互相垂直且交点在准线上;
(7)通径:过焦点与对称轴垂直的弦长等于2p.
思考辨析
判断下列结论是否正确(请在括号中打“√”或“×”)
(1)平面内与一个定点F和一条定直线l的距离相等的点的轨迹是抛物线.( × )
(2)方程y=4x2表示焦点在x轴上的抛物线,焦点坐标是(1,0).( × )
(3)抛物线既是中心对称图形,又是轴对称图形.( × )
(4)若直线与抛物线只有一个交点,则直线与抛物线相切.( × )
教材改编题
1.抛物线y=2x2的准线方程为(  )
A.y=- B.y=- C.y=- D.y=-1
答案 A
解析 由y=2x2,得x2=y,故抛物线y=2x2的准线方程为y=-.
2.过抛物线y2=4x的焦点的直线l交抛物线于P(x1,y1),Q(x2,y2)两点,如果x1+x2=6,则|PQ|等于(  )
A.9 B.8 C.7 D.6
答案 B
解析 抛物线y2=4x的焦点为F(1,0),准线方程为x=-1.根据题意可得,
|PQ|=|PF|+|QF|=x1+1+x2+1
=x1+x2+2=8.
3.已知抛物线C与双曲线x2-y2=1有相同的焦点,且顶点在原点,则抛物线C的方程是________.
答案 y2=±4x
解析 由已知可知双曲线的焦点为
(-,0),(,0).
设抛物线方程为y2=±2px(p>0),则=,
所以p=2,所以抛物线方程为y2=±4x.
题型一 抛物线的定义和标准方程
命题点1 定义及应用
例1 (1)(2020·全国Ⅰ)已知A为抛物线C:y2=2px(p>0)上一点,点A到C的焦点的距离为12,到y轴的距离为9,则p等于(  )
A.2 B.3 C.6 D.9
答案 C
解析 设A(x,y),由抛物线的定义知,点A到准线的距离为12,即x+=12.
又因为点A到y轴的距离为9,即x=9,
所以9+=12,解得p=6.
(2)已知点M(20,40),抛物线y2=2px(p>0)的焦点为F.若对于抛物线上的一点P,|PM|+|PF|的最小值为41,则p的值等于________.
答案 42或22
解析 当点M(20,40)位于抛物线内时,如图①,过点P作抛物线准线的垂线,垂足为D,
①        ②
则|PF|=|PD|,
|PM|+|PF|=|PM|+|PD|.
当点M,P,D三点共线时,|PM|+|PF|的值最小.
由最小值为41,得20+=41,解得p=42.
当点M(20,40)位于抛物线外时,如图②,当点P,M,F三点共线时,|PM|+|PF|的值最小.
由最小值为41,得=41,
解得p=22或p=58.
当p=58时,y2=116x,点M(20,40)在抛物线内,故舍去.
综上,p=42或p=22.
思维升华 “看到准线想到焦点,看到焦点想到准线”,许多抛物线问题均可根据定义获得简捷、直观的求解.“由数想形,由形想数,数形结合”是灵活解题的一条捷径.
命题点2 求标准方程
例2 (1)设抛物线y2=2px的焦点在直线2x+3y-8=0上,则该抛物线的准线方程为(  )
A.x=-4 B.x=-3
C.x=-2 D.x=-1
答案 A
解析 直线2x+3y-
内容来自帮提分https://www.sfbroad.com转载请标明出处.
相关文档