第9讲 函数模型及其应用
一、知识梳理
1.几种常见的函数模型
函数模型
函数解析式
一次函数模型
f(x)=ax+b(a,b为常数,a≠0)
二次函数模型
f(x)=ax2+bx+c(a,b,c为常数,a≠0)
指数函数模型
f(x)=bax+c(a,b,c为常数,
a>0且a≠1,b≠0)
对数函数模型
f(x)=blogax+c
(a,b,c为常数,a>0且a≠1,b≠0)
幂函数模型
f(x)=axn+b(a,b,n为常数,a≠0,n≠0)
2.三种函数模型性质比较
y=ax(a>1)
y=logax(a>1)
y=xn(n>0)
在(0,+∞)
上的单调性
增函数
增函数
增函数
增长速度
越来越快
越来越慢
相对平稳
图象的变化
随x值增大,图象与y轴接***行
随x值增大,图象与x轴接***行
随n值变化而不同
常用结论
“对勾”函数f(x)=x+(a>0)的性质
(1)该函数在(-∞,-]和[,+∞)上单调递增,在[-,0)和(0, ]上单调递减.
(2)当x>0时,x=时取最小值2;
当x<0时,x=-时取最大值-2.
二、教材衍化
1.在某个物理实验中,测量得变量x和变量y的几组数据,如表:
x
0.50
0.99
2.01
3.98
y
-0.99
0.01
0.98
2.00
则对x,y最适合的拟合函数是( )
A.y=2x B.y=x2-1
C.y=2x-2 D.y=log2x
解析:选D.根据x=0.50,y=-0.99,代入计算,可以排除A;根据x=2.01,y=0.98,代入计算,可以排除B,C;将各数据代入函数y=log2x,可知满足题意.
2.某工厂一年中各月份的收入、支出情况的统计图如图所示,则下列说法中错误的是( )
A.收入最高值与收入最低值的比是3∶1
B.结余最高的月份是7月
C.1至2月份的收入的变化率与4至5月份的收入的变化率相同
D.前6个月的平均收入为40万元
解析:选D.由题图可知,收入最高值为90万元,收入最低值为30万元,其比是3∶1,故A正确;由题图可知,7月份的结余最高,为80-20=60(万元),故B正确;由题图可知,1至2月份的收入的变化率与4至5月份的收入的变化率相同,故C正确;由题图可知,前6个月的平均收入为×(40+60+30+30+50+60)=45(万元),故D错误.
3.用长度为24的材料围一矩形场地,中间加两道隔墙,要使矩形的面积最大,则隔墙的长度为______.
解析:设隔墙的长度为x(0<x<6),矩形面积为y,则y=x×=2x(6-x)=-2(x-3)2+18,所以当x=3时,y最大.
答案:3
一、思考辨析
判断正误(正确的打“√”,错误的打“×”)
(1)幂函数增长比一次函数增长更快.( )
(2)在(0,+∞)内,随着x的增大,y=ax(a>1)的增长速度会超过并远远大于y=xα(α>0)的增长速度.( )
(3)指数型函数模型,一般用于解决变化较快,短时间内变化量较大的实际问题.( )
答案:(1)× (2)√ (3)√
二、易错纠偏
常见误区(1)忽视实际问题中实际量的单位、含义、范围等;
(2)建立函数模型出错.
1.某城市客运公司确定客票价格的方法是:如果行程不超过100 km,票价是0.5元/km,如果超过100 km,超过100 km的部分按0.4元/km定价,则客运票价y(元)与行驶千米数x(km)之间的函数关系式是________.
解析:由题意可得
y=
答案:y=
2.生产一定数量商品的全部费用称为生产成本,某企业一个月生产某种商品x万件时的生产成本为C(x)=x2+2x+20(万元).一万件售价为20万元,为获取更大利润,该企业一个月应生产该商品数量为________万件.
解析:设利润为L(x),则利润L(x)=20x-C(x)=
-(x-18)2+142,当x=18 时,L(x)有最大值.
答案:18
考点一 用函数图象刻画变化过程(基础型)
复****指导能将实际问题转化为数学问题,会应用函数图象对实际问题进行描述.
核心素养:数学建模
1.(2020·广州市综合检测(一))如图,一高为H且装满水的鱼缸,其底部装有一排水小孔,当小孔打开时,水从孔中匀速流出,水流完所用时间为T. 若鱼缸水深为h时,水流出所用时间为t,则函数h=f(t)的图象大致是( )
解析:选B.水位由高变低,排除C,D.半缸前下降速度先快后慢,半缸后下降速