下载此文档

人教高中数学第八节 第2课时 解题上——5大技法破解“计算繁而杂”这一难题 教案.doc


高中 高三 上学期 数学 人教版

1340阅读234下载16页344 KB

下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
下载所得到的文件列表
人教高中数学第八节 第2课时 解题上——5大技法破解“计算繁而杂”这一难题 教案.doc
文档介绍:
第2课时 解题上——5大技法破解“计算繁而杂”这一难题
中学解析几何是将几何图形置于直角坐标系中,用方程的观点来研究曲线,体现了用代数的方法解决几何问题的优越性,但有时运算量过大,或需繁杂的讨论,这些都会影响解题的速度,甚至会中止解题的过程,达到“望题兴叹”的地步.特别是高考过程中,在规定的时间内,保质保量完成解题的任务,计算能力是一个重要的方面.因此,本讲从以下5个方面探索减轻运算量的方法和技巧,合理简化解题过程,优化思维过程,达到快准解题.
技法一 回归定义,以逸待劳
回归定义的实质是重新审视概念,并用相应的概念解决问题,是一种朴素而又重要的策略和思想方法.圆锥曲线的定义既是有关圆锥曲线问题的出发点,又是新知识、新思维的生长点.对于相关的圆锥曲线中的数学问题,若能根据已知条件,巧妙灵活应用定义,往往能达到化难为易、化繁为简、事半功倍的效果.  
[典例] 如图,F1,F2是椭圆C1:+y2=1与双曲线C2的公共焦点,A,B分别是C1,C2在第二、四象限的公共点.若四边形AF1BF2为矩形,则C2的离心率是(  )
A.          B.
C. D.
[解题观摩] 由已知,得F1(-,0),F2(,0),设双曲线C2的实半轴长为a,由椭圆及双曲线的定义和已知,
可得
解得a2=2,故a=.
所以双曲线C2的离心率e==.
[答案] D
[名师微点]
本题巧妙运用椭圆和双曲线的定义建立|AF1|,|AF2|的等量关系,从而快速求出双曲线实半轴长a的值,进而求出双曲线的离心率,大大降低了运算量.  
[针对训练]
1.(2019·全国卷Ⅰ)已知椭圆C的焦点为F1(-1,0),F2(1,0),过F2的直线与C交于A,B两点.若|AF2|=2|F2B|,|AB|=|BF1|,则C的方程为(  )
A.+y2=1 B.+=1
C.+=1 D.+=1
解析:选B 法一:设椭圆的标准方程为+=1(a>b>0).由椭圆的定义可得|AF1|+|AB|+|BF1|=4a.
∵|AB|=|BF1|,|AF2|=2|F2B|,
∴|AB|=|BF1|=|AF2|,
∴|AF1|+3|AF2|=4a.
又∵|AF1|+|AF2|=2a,
∴|AF1|=|AF2|=a,
∴点A是椭圆的短轴端点.如图,不妨设A(0,-b),
由F2(1,0),=2,得B.
由点B在椭圆上,得+=1,得a2=3,b2=a2-c2=2.
∴椭圆C的方程为+=1.
法二:由题意设椭圆C的方程为+=1(a>b>0),连接F1A,令|F2B|=m,则|AF2|=2m,|BF1|=3m.由椭圆的定义知,4m=2a,得m=,故|F2A|=a=|F1A|,则点A为椭圆C的上顶点或下顶点.令∠OAF2=θ(O为坐标原点),则sin θ=.在等腰三角形ABF1中, cos 2θ==,∴=1-22,解得a2=3.又c2=1,∴b2=a2-c2=2,椭圆C的方程为+=1.故选B.
2.抛物线y2=4mx(m>0)的焦点为F,点P为该抛物线上的动点,若点A(-m,0),则的最小值为________.
解析:设点P的坐标为(xP,yP),由抛物线的定义,
知|PF|=xP+m,
又|PA|2=(xP+m)2+y=(xP+m)2+4mxP,
则2==
≥=(当且仅当xP=m时取等号),
所以≥,所以的最小值为.
答案:
技法二 设而不求,金蝉脱壳
设而不求是解析几何解题的基本手段,是比较特殊的一种思想方法,其实质是整体结构意义上的变式和整体思想的应用.设而不求的灵魂是通过科学的手段使运算量最大限度地减少,通过设出相应的参数,利用题设条件加以巧妙转化,以参数为过渡,设而不求.  
[典例] (2021·石家庄质检)已知P是圆C:(x-2)2+(y+2)2=1上一动点,过点P作抛物线x2=8y的两条切线,切点分别为A,B,则直线AB斜率的最大值为(  )
A. B.
C. D.
[解题观摩] 由题意可知,PA,PB的斜率都存在,分别设为k1,k2,切点A(x1,y1),B(x2,y2),
设P(m,n),过点P的抛物线的切线为y=k(x-m)+n,
联立,得x2-8kx+8km-8n=0,
因为Δ=64k2-32km+32n=0,即2k2-km+n=0,
所以k1+k2=,k1k2=,
又由x2=8y得y′=,所以x1=4k1,y1==2k,
x2=4k2,y2==2k,
所以kAB====,
因为点P(m,n)满足2+2=1,
所以1≤m≤3,
因此≤≤,
即直线AB斜率的最大值为.故选B.
[答案] B
内容来自帮提分https://www.sfbroad.com转载请标明出处.
相关文档