下载此文档

人教高中数学第七章 随机变量及其分布知识总结.doc


高中 高三 上学期 数学 人教版

1340阅读234下载18页1.30 MB

下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
下载所得到的文件列表
人教高中数学第七章 随机变量及其分布知识总结.doc
文档介绍:
第七章 随机变量及其分布


知识点一 条件概率的概念
1.定义
设、为两个事件,且,在已知事件发生的条件下,事件B发生的概率叫做条件概率。用符号表示。读作:发生的条件下B发生的概率。
2.P(A|B)、P(AB)、P(B)的区别
P(A|B)是在事件B发生的条件下,事件A发生的概率。
P(AB)是事件A与事件B同时发生的概率,无附加条件。
P(B)是事件B发生的概率,无附加条件.
它们的联系是:.
知识点二、条件概率的公式
1.计算事件B发生的条件下事件A发生的条件概率,常有以下两种方式:
①利用定义计算.
先分别计算概率P(AB)及P(B),然后借助于条件概率公式求解.
②利用缩小样本空间的观点计算.
在这里,原来的样本空间缩小为已知的条件事件B,原来的事件A缩小为事件AB,从而,即:,此法常应用于古典概型中的条件概率求解.
2.条件概率公式的变形.
公式揭示了P(B)、P(A|B)、P(AB)的关系,常常用于知二求一,即要熟练应用它的变形公式如,若P(B)>0,则P(AB)=P(B)·P(A|B),该式称为概率的乘法公式.
知识点三、相互独立事件
1.定义:
事件(或)是否发生对事件(或)发生的概率没有影响,即,这样的两个事件叫做相互独立事件。
若与是相互独立事件,则与,与,与也相互独立。
2.相互独立事件同时发生的概率公式:
对于事件A和事件B,用表示事件A、B同时发生。
(1)若与是相互独立事件,则;
(2)若事件相互独立,那么这个事件同时发生的概率,等于每个事件发生的概率的积,
即:。
3.相互独立事件与互斥事件的比较
互斥事件与相互独立事件是两个不同的概念,它们之间没有直接关系。
互斥事件是指两个事件不可能同时发生,而相互独立事件是指一个事件是否发生对另一个事件发生的概率没有影响。
一般地,两个事件不可能既互斥又相互独立,因为互斥事件是不可能同时发生的,而相互独立事件是以它们能够同时发生为前提的。相互独立事件同时发生的概率等于每个事件发生的概率的积,这一点与互斥事件的概率和也是不同的。
4. 几种事件的概率公式的比较
已知两个事件A,B,它们发生的概率为P(A),P(B),将A,B中至少有一个发生记为事件A+B,都发生记为事件A·B,都不发生记为事件,恰有一个发生记为事件,至多有一个发生记为事件,则它们的概率间的关系如下表所示:
概率
A,B互斥
A,B相互独立
P(A+B)
P(A)+P(B)
P(A·B)
0
P(A)·P(B)
1-[P(A)+P(B)]
P(A)+P(B)
1
1-P(A)·P(B)
知识点四 全概率公式
1.全概率公式的定义
一般地,设是一组两两互斥的事件,,且,,则对任意的事件,有

我们称上面的公式为全概率公式(total probability formula).全概率公式是概率论中最基本的公式之一.
2.贝叶斯公式
*贝叶斯公式:设A1,A2,…,An是一组两两互斥的事件,A1∪A2∪…∪An=Ω,且P(Ai)>0,i=1,2,…,n,则对任意的事件B⊆Ω,P(B)>0,有P(Ai|B)==,i=1,2,…,n.
贝叶斯公式的内含
(1)公式P(A1|B)==反映了P(A1B),P(A1),P(B),P(A1|B),P(B|A1)之间的互化关系.
(2)P(A1)称为先验概率,P(A1|B)称为后验概率,其反映了事情A1发生的可能在各种可能原因中的比重.
知识点五 随机变量和离散型随机变量
1. “随机试验”的概念
一般地,一个试验如果满足下列条件:
a.试验可以在相同的情形下重复进行.
B.试验的所有可能结果是明确可知的,并且不止一个.
c.每次试验总是恰好出现这些可能结果中的一个,但在试验之前却不能肯定这次试验会出现哪一个结果.
这种试验就是一个随机试验,为了方便起见,也简称试验.
2.随机变量的定义
一般地,如果随机试验的结果,可以用一个变量来表示,那么这样的变量叫做随机变量.
通常用大写拉丁字母X,Y,Z(或小写希腊字母ξ,η,ζ)等表示。
3.离散型随机变量的定义
如果对于随机变量可能取的值,可以按一定次序一一列出,这样的随机变量叫做离散型随机变量。
离散型随机变量的例子很多.例如某人射击一次可能命中的环数 X 是一个离散型随机变量,它的所有可能取值为0,1,…,10;某网页在24小时内被浏览的次数Y也是一个离散型随机变量,它的所有可能取值为0, 1,2,….
4. 随机变量的分类
随机变量有
内容来自帮提分https://www.sfbroad.com转载请标明出处.
相关文档