下载此文档

人教高中数学第三节 直线、平面平行的判定与性质 教案.doc


高中 高三 上学期 数学 人教版

1340阅读234下载17页781 KB

下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
下载所得到的文件列表
人教高中数学第三节 直线、平面平行的判定与性质 教案.doc
文档介绍:
第三节 直线、平面平行的判定与性质
核心素养立意下的命题导向
1.结合立体几何的定义、公理,会推导直线和平面平行、平面和平面平行的判定定理和性质定理,凸显逻辑推理的核心素养.
2.常与求几何体的体积计算相结合,会应用直线和平面平行、平面和平面平行的判定定理、性质定理证明空间的线、面平行关系,凸显直观想象、逻辑推理的核心素养.
[理清主干知识]
1.直线与平面平行
(1)直线与平面平行的定义
直线l与平面α没有公共点,则称直线l与平面α平行.
(2)判定定理与性质定理
文字语言
图形表示
符号表示
判定定理
平面外一条直线与此平面内的一条直线平行,则该直线平行于此平面
a⊄α,b⊂α,
a∥b ⇒a∥α
性质定理
一条直线和一个平面平行,则过这条直线的任一平面与此平面的交线与该直线平行
a∥α,a⊂β,
α∩β=b⇒a∥b
2.平面与平面平行
(1)平面与平面平行的定义
没有公共点的两个平面叫做平行平面.
(2)判定定理与性质定理
文字语言
图形表示
符号表示
判定定理
一个平面内的两条相交直线与另一个平面平行,则这两个平面平行
a⊂α,b⊂α,
a∩b=P,a∥β,
b∥β⇒α∥β
性质定理
两个平面平行,则其中一个平面内的直线平行于另一个平面 
α∥β,a⊂α⇒
a∥β
如果两个平行平面同时和第三个平面相交,那么它们的交线平行
α∥β,α∩γ=a,β∩γ=b⇒a∥b
3.谨记两个结论
(1)垂直于同一条直线的两个平面平行,即若a⊥α,a⊥β,则α∥β.
(2)平行于同一平面的两个平面平行,即若α∥β,β∥γ,则α∥γ.
[澄清盲点误点]
一、关键点练明
1.(直线与平面平行的定义)如果直线a∥平面α,那么直线a与平面α内的(  )
A.一条直线不相交     B.两条直线不相交
C.无数条直线不相交 D.任意一条直线都不相交
解析:选D 因为a∥平面α,直线a与平面α无公共点,因此a和平面α内的任意一条直线都不相交,故选D.
2.(面面平行的判定定理)设α,β是两个不同的平面,m是一条直线且m⊂α,“m∥β”是“α∥β”的(  )
A.充分不必要条件 B.必要不充分条件
C.充要条件 D.既不充分也不必要条件
解析:选B 当m∥β时,过m的平面α与β可能平行也可能相交,因而m∥βα∥β;当α∥β时,α内任一直线与β平行,因为m⊂α,所以m∥β.综上知,“m∥β”是“α∥β”的必要不充分条件.
3.(平行关系的判定)已知m,n是两条不同的直线,α,β,γ是三个不同的平面,则下列命题中正确的是(  )
A.m∥α,n∥α,则m∥n B.m∥n,m∥α,则n∥α
C.m⊥α,m⊥β,则α∥β D.α⊥γ,β⊥γ,则α∥β
解析:选C A中,m与n平行、相交或异面,A不正确;B中,n∥α或n⊂α,B不正确;根据线面垂直的性质,C正确;D中,α∥β或α与β相交,D不正确.
4.(面面平行的性质定理)设α,β,γ是三个不同的平面,a,b是两条不同的直线,有下列三个条件:
①a∥γ,b⊂β;②a∥γ,b∥β;③b∥β,a⊂γ.
如果命题“α∩β=a,b⊂γ,且________,则a∥b”为真命题,则可以在横线处填入的条件是________(填序号).
解析:由面面平行的性质定理可知,①正确;当b∥β,a⊂γ时,a和b在同一平面内,且没有公共点,所以平行,
③正确.故应填入的条件为①或③.
答案:①或③
二、易错点练清
1.(忽视面面平行的条件)下列条件中,能判断两个平面平行的是(  )
A.一个平面内的一条直线平行于另一个平面
B.一个平面内的两条直线平行于另一个平面
C.一个平面内有无数条直线平行于另一个平面
D.一个平面内任何一条直线都平行于另一个平面
解析:选D 由两个平面平行的判定定理可知,如果一个平面内的两条相交直线与另外一个平面平行,那么这两个平面平行.故可知D符合.
2.(对空间平行关系相互转化的条件理解不到位)设m,l表示两条不同的直线,α表示平面,若m⊂α,则“l∥α”是“l∥m”的________条件.
解析:由m⊂α,l∥α不能推出l∥m;由m⊂α,l∥m也不能推出l∥α,所以是既不充分也不必要条件.
答案:既不充分也不必要
3.(忽视线面平行的条件)(1)若直线a与平面α内无数条直线平行,则a与α的位置关系是______________.
(2)已知直线a,b和平面α,β,若a⊂α,b⊂α,a∥β,b∥β,则α,β的位置关系是______________.
(3)若α∥β,直线a
内容来自帮提分https://www.sfbroad.com转载请标明出处.
相关文档