下载此文档

人教高中数学第三课时 构造函数证明不等式.doc


高中 高三 上学期 数学 人教版

1340阅读234下载13页131 KB

下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
下载所得到的文件列表
人教高中数学第三课时 构造函数证明不等式.doc
文档介绍:
第三课时 构造函数证明不等式
 题型一 移项构造函数证明不等式
例1 已知函数f(x)=ex-3x+3a(e为自然对数的底数,a∈R).
(1)求f(x)的单调区间与极值;
(2)求证:当a>ln ,且x>0时,>x+-3a.
(1)解 由f(x)=ex-3x+3a,x∈R,
知f′(x)=ex-3,x∈R.
令f′(x)=0,得x=ln 3,
于是当x变化时,f′(x),f(x)的变化情况如下表:
x
(-∞,ln 3)
ln 3
(ln 3,+∞)
f′(x)

0

f(x)

极小值

故f(x)的单调递减区间是(-∞,ln 3),单调递增区间是(ln 3,+∞),
f(x)在x=ln 3处取得极小值,极小值为f(ln 3)=eln 3-3ln 3+3a=3(1-ln 3+a),无极大值.
(2)证明 待证不等式等价于ex>x2-3ax+1,
设g(x)=ex-x2+3ax-1,x>0,
于是g′(x)=ex-3x+3a,x>0.
由(1)及a>ln =ln 3-1知
g′(x)的最小值为g′(ln 3)=3(1-ln 3+a)>0.
于是对任意x>0,都有g′(x)>0,
所以g(x)在(0,+∞)内单调递增.
于是当a>ln =ln 3-1时,对任意x∈(0,+∞),都有g(x)>g(0).
而g(0)=0,从而对任意x∈(0,+∞),g(x)>0.
即ex>x2-3ax+1,故>x+-3a.
感悟提升 待证不等式的两边含有同一个变量时,一般地,可以直接构造“左减右”或“右减左”的函数,利用导数研究其单调性等相关函数性质证明不等式.
训练1 证明:当x>1时,x2+ln x<x3.
证明 设g(x)=x3-x2-ln x,
则g′(x)=2x2-x-,
因为当x>1时,
g′(x)=>0,
所以g(x)在(1,+∞)上是增函数,
所以当x>1时,g(x)>g(1)=>0,
所以当x>1时,x2+ln x<x3.
 题型二 分拆函数法证明不等式
例2 证明:对一切x∈(0,+∞),都有ln x>-成立.
证明 问题等价于证明xln x>-(x∈(0,+∞)).
设f(x)=xln x,f′(x)=1+ln x,易知x=为f(x)的唯一极小值点,
则f(x)=xln x(x∈(0,+∞))的最小值是-,当且仅当x=时取到.
设m(x)=-(x∈(0,+∞)),则m′(x)=,由m′(x)<0,得x>1时,m(x)单调递减;
由m′(x)>0得0<x<1时,m(x)单调递增,易知m(x)max=m(1)=-,当且仅当x=1时取到
.从而对一切x∈(0,+∞),xln x≥-≥-,两个等号不同时取到,所以对一切x∈(0,+∞)都有ln x>-成立.
感悟提升 1.若直接求导后导数式比较复杂或无从下手时,可将待证式进行变形,构造两个函数,从而找到可以传递的中间量,达到证明的目标.在证明过程中,等价转化是关键,此处g(x)min≥f(x)max恒成立,从而f(x)≤g(x)恒成立.
2.等价变形的目的是求导后简单地找到极值点,一般地,ex与ln x要分离,常构造xn与ln x,xn与ex的积、商形式.便于求导后找到极值点.
训练2 (2022·百校大联考)已知函数f(x)=eln x-ax(x∈R).
(1)讨论函数f(x)的单调性;
(2)当a=e时,证明:xf(x)-ex+2ex≤0.
(1)解 f′(x)=-a(x>0),
①若a≤0,则f′(x)>0,f(x)在(0,+∞)上单调递增;
②若a>0,则当0<x<时,f′(x)>0;
当x>时,f′(x)<0,∴f(x)在上单调递增,在上单调递减.
综上,当a≤0时,f(x)在(0,+∞)上单调递增;当a>0时,f(x)在上单调递增,在上单调递减.
(2)证明 法一 ∵x>0,∴只需证f(x)≤-2e,
当a=e时,由(1)知,f(x)在(0,1)上单调递增,在(1,+∞)上单调递减,
∴f(x)max=f(1)=-e.
记g(x)=-2e(x>0),
则g′(x)=,
∴当0<x<1时,g′(x)<0,当x>1时,g′(x)>0,故g(x)在(0,1)上单调递减;
在(1,+∞)上单调递增,
∴g(x)min=g(1)=-e.
综上,当x>0时,f(x)≤g(x),即f(x)≤-2e,即xf(x)-ex+2ex≤0.
法二 由题意知,即证exln x-ex2-ex+2ex≤0,
从而等价于ln x-x+2≤.
设函数g(x)=ln x-x+2,
则g′(x)=-1.
∴当x∈(0,1)时,g′(x)>0
内容来自帮提分https://www.sfbroad.com转载请标明出处.
相关文档