下载此文档

人教高中数学第三章 圆锥曲线的方程知识总结(思维导图+知识记诵+能力培养)(含解析).docx


高中 高三 上学期 数学 人教版

1340阅读234下载17页1.14 MB

下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
下载所得到的文件列表
人教高中数学第三章 圆锥曲线的方程知识总结(思维导图+知识记诵+能力培养)(含解析).docx
文档介绍:
第三章 圆锥曲线的方程单元总结

要点一:圆锥曲线的标准方程和几何性质
1.椭圆:
(1)椭圆概念
平面内与两个定点、的距离的和等于常数2(大于)的点的轨迹叫做椭圆。
这两个定点叫做椭圆的焦点,两焦点的距离2c叫椭圆的焦距。若为椭圆上任意一点,则有。
椭圆的标准方程为:()(焦点在x轴上)或()(焦点在y轴上)。
要点诠释:
①上方程中的大小,其中;
②在和两个方程中都有的条件,要分清焦点的位置,只要看和的分母的大小。
例如椭圆(,,)当时表示焦点在轴上的椭圆;当时表示焦点在轴上的椭圆。
(2)椭圆的性质
①范围:由标准方程知,,说明椭圆位于直线,所围成的矩形里;
②对称性: 椭圆关于轴、轴和原点对称。这时,坐标轴是椭圆的对称轴,原点是对称中心,椭圆的对称中心叫椭圆的中心;
③顶点: ,,,是椭圆的四个顶点。
同时,线段、分别叫做椭圆的长轴和短轴,它们的长分别为和,和分别叫做椭圆的长半轴长和短半轴长。
④离心率:椭圆的焦距与长轴的比叫椭圆的离心率。
∵,∴,且越接近,就越接近,从而就越小,对应的椭圆越扁;反之,越接近于,就越接近于,从而越接近于,这时椭圆越接近于圆。当且仅当时,,两焦点重合,图形变为圆,方程为。
2.双曲线
(1)双曲线的概念
平面内与两个定点的距离的差的绝对值等于常数(小于且不等于零)的点的轨迹叫做双曲线.
要点诠释:
①式中是差的绝对值,在条件下;时为双曲线的一支;时为双曲线的另一支(含的一支);
②当时,表示两条射线;
③当时,不表示任何图形;④两定点叫做双曲线的焦点,叫做焦距。
(2)双曲线的性质
①范围:从标准方程,看出曲线在坐标系中的范围:双曲线在两条直线的外侧。即,即双曲线在两条直线的外侧。
②对称性:双曲线关于每个坐标轴和原点都是对称的,这时,坐标轴是双曲线的对称轴,原点是双曲线的对称中心,双曲线的对称中心叫做双曲线的中心。
③顶点:双曲线和对称轴的交点叫做双曲线的顶点。在双曲线的方程里,对称轴是轴,所以令得,因此双曲线和轴有两个交点,他们是双曲线的顶点。
令,没有实根,因此双曲线和y轴没有交点。
注意:双曲线的顶点只有两个,这是与椭圆不同的(椭圆有四个顶点),双曲线的顶点分别是实轴的两个端点。
实轴:线段叫做双曲线的实轴,它的长等于叫做双曲线的实半轴长。
虚轴:线段叫做双曲线的虚轴,它的长等于叫做双曲线的虚半轴长。
④渐近线: 渐近线方程:.
这两条直线即称为双曲线的渐近线。从图上看,双曲线的各支向外延伸时,与这两条直线逐渐接近。
3.抛物线
(1)抛物线的概念
平面内与一定点F和一条定直线l的距离相等的点的轨迹叫做抛物线
(定点F不在定直线l上)。定点F叫做抛物线的焦点,定直线l叫做抛物线的准线。
方程叫做抛物线的标准方程。
注意:它表示的抛物线的焦点在x轴的正半轴上,焦点坐标是F(,0),它的准线方程是 ;
(2)抛物线的性质
一条抛物线,由于它在坐标系的位置不同,方程也不同,有四种不同的情况,所以抛物线的标准方程还有其他几种形式:,,.这四种抛物线的图形、标准方程、焦点坐标以及准线方程如下表:
标准方程
图形
焦点坐标
准线方程
范围
对称性




顶点
离心率
要点诠释:
(1)通径:过抛物线的焦点且垂直于对称轴的弦称为通径;
(2)抛物线的几何性质的特点:有一个顶点,一个焦点,一条准线,一条对称轴,无对称中心,没有渐近线;
(3)注意强调的几何意义:是焦点到准线的距离。
要点二:直线和圆锥曲线的位置关系
直线与圆锥曲线有三种位置关系:相交,相切,相离。
1.直线与圆锥曲线C的位置关系
判断直线与圆锥曲线C的位置关系时,将直线的方程代入曲线C的方程,消去y(也可消去x)得一个关于变量x(或y)的一元二次方程ax2+bx+c=0。
①当a≠0时,
若Δ>0,则与C相交;
若Δ=0,则与C相切;
若Δ<0,则有与C相离。
②当a=0时,即得到一个一次方程,若方程有解,则直线与C相交,此时只有一个公共点
若C为双曲线,则平行于双曲线的渐近线;
若C为抛物线,则平行于抛物线的对称轴。
2.直线被圆锥曲线截得的弦长公式:
斜率为k的直线被圆锥曲线截得弦AB,设,,则
弦长公式:
当时, 弦长公式还可以写成:
要点诠释:
(1)当直线与双曲线、抛物线只有一个公共点时
内容来自帮提分https://www.sfbroad.com转载请标明出处.
相关文档