下载此文档

人教高中数学第四节 复数 教案.doc


高中 高三 上学期 数学 人教版

1340阅读234下载13页251 KB

下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
下载所得到的文件列表
人教高中数学第四节 复数 教案.doc
文档介绍:
第四节 复数
核心素养立意下的命题导向
1.通过方程的解,认识复数.
2.结合复数的代数表示及其几何意义,考查复数的实部、虚部,共轭复数,复数的模等概念的认识,凸显逻辑推理、数学运算的核心素养.
3.结合复数的运算法则,考查复数的加、减、乘、除运算,凸显数学运算的核心素养.
[理清主干知识]
1.复数的定义及分类
(1)复数的定义:
形如a+bi(a,b∈R)的数叫做复数,其中实部是a,虚部是b.
(2)复数的分类:
2.复数的有关概念
复数相等
a+bi=c+di⇔a=c且b=d(a,b,c,d∈R)
共轭复数
a+bi与c+di共轭⇔a=c且b=-d(a,b,c,d∈R)
复数的模
向量OZ―→的模叫做复数z=a+bi的模,记作|z|或|a+bi|,即|z|=|a+bi|=r=(r≥0,a,b∈R)
3.复数的几何意义
复平面
的概念
建立直角坐标系来表示复数的平面叫做复平面
实轴、
虚轴
在复平面内,x轴叫做实轴,y轴叫做虚轴,实轴上的点都表示实数;除原点以外,虚轴上的点都表示纯虚数
复数的
几何表示
复数z=a+bi复平面内的点Z(a,b) 平面向量
4.复数的运算法则
设z1=a+bi,z2=c+di(a,b,c,d∈R),则:
(1)z1+z2=(a+bi)+(c+di)=(a+c)+(b+d)i;
(2)z1-z2=(a+bi)-(c+di)=(a-c)+(b-d)i;
(3)z1·z2=(a+bi)(c+di)=(ac-bd)+(ad+bc)i;
(4)===+i(c+di≠0).
5.复数运算的几个重要结论
(1)|z1+z2|2+|z1-z2|2=2(|z1|2+|z2|2).
(2)·z=|z|2=||2.
(3)若z为虚数,则|z|2≠z2.
(4)(1±i)2=±2i.
(5)=i;=-i.
(6)i4n=1;i4n+1=i;i4n+2=-1;i4n+3=-i.
[澄清盲点误点]
一、关键点练明
1.(复数的概念)复数z=的虚部为(  )
A.           B.i
C.- D.-i
解析:选A z====+i.故选A.
2.(复数的模)复数z=(1+i)2,则|z|=(  )
A.0 B.1
C.2 D.3
解析:选C 由题得z=2i,所以|z|=2.故选C.
3.(复数的几何意义)复数z=在复平面上的对应点位于(  )
A.第一象限 B.第二象限
C.第三象限 D.第四象限
解析:选A z===2+i,在复平面上的对应点为,位于第一象限.故选A.
4.(复数的运算)若复数z满足z·i=1+i(i是虚数单位),则z的共轭复数是________.
解析:由z·i=1+i,得z===1-i,
∴=1+i.
答案:1+i
二、易错点练清
1.(概念理解错误)i为虚数单位,复数的虚部是(  )
A.-1 B.1
C.i D.-i
解析:选B 由题意得,===i,所以复数的虚部是1.故选B.
2.(混淆绝对值与复数模的含义)若z=3+4i,则|z|=(  )
A. B.5
C.7 D.25
解析:选B 因为z=3+4i,
所以|z|===5.
考点一 复数的概念
1.(2020·浙江高考)已知a∈R,若a-1+(a-2)i(i为虚数单位)是实数,则a=(  )
A.1          B.-1
C.2 D.-2
解析:选C 因为a-1+(a-2)i是实数,所以a-2=0,所以a=2,故选C.
2.(2020·全国卷Ⅰ)若z=1+2i+i3,则|z|=(  )
A.0 B.1
C. D.2
解析:选C 因为z=1+2i+i3=1+2i-i=1+i,
所以|z|==,故选C.
3.(多选)已知i为虚数,且复数z满足z(1+2i)=1+i3,则下列关于复数z的命题中正确的为(  )
A.复数z的虚部为-
B.|z|=
C.复数z对应的点在第三象限
D.z<1+2i
解析:选AC z===,
则复数z的虚部为-,故A正确;
|z|= =,故B错误;
复数z对应的点为,为第三象限内的点,故C正确;
虚数不能比较大小,故D错误.故选A、C.
4.(多选)(2021年1月新高考八省联考卷)设z1,z2,z3为复数,z1≠0.下列命题中正确的是(  )
A.若|z2|=|z3|,则z2=±z3
B.若z1z2=z1z3,则z2=z3
C.若2=z3,则|z1z2|=|z1z3|
D.若z1z2=|z1|2,则z1=z2
解析:选B
内容来自帮提分https://www.sfbroad.com转载请标明出处.
相关文档