下载此文档

人教高中数学第四节 椭圆 教案.doc


高中 高三 上学期 数学 人教版

1340阅读234下载29页673 KB

下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
下载所得到的文件列表
人教高中数学第四节 椭圆 教案.doc
文档介绍:
第四节 椭圆
核心素养立意下的命题导向
1.结合椭圆的定义,考查应用能力,凸显逻辑推理、数学运算的核心素养.
2.结合椭圆的定义、简单的几何性质、几何图形,会求椭圆方程及解与几何性质有关的问题,凸显数学运算、直观想象的核心素养.
[理清主干知识]
1.椭圆的定义
平面内与两个定点F1,F2的距离的和等于常数(大于|F1F2|)的点的轨迹叫做椭圆.这两个定点叫做椭圆的焦点,两焦点间的距离叫做椭圆的焦距.
集合P={M||MF1|+|MF2|=2a},|F1F2|=2c,其中a>0,c>0,且a,c为常数.
(1)若a>c,则集合P为椭圆.
(2)若a=c,则集合P为线段.
(3)若a<c,则集合P为空集.
2.椭圆的标准方程和几何性质
标准方程
+=1(a>b>0)
+=1(a>b>0)
图形
性 质
范围
-a≤x≤a,-b≤y≤b
-b≤x≤b,-a≤y≤a
对称性
对称轴:坐标轴;对称中心:(0,0)
顶点
A1(-a,0),A2(a,0),B1(0,-b),B2(0,b)
A1(0,-a),A2(0,a),B1(-b,0),B2(b,0)
离心率
e=,且e∈(0,1)
a,b,c的关系
c2=a2-b2
3.常用结论
(1)过椭圆焦点垂直于长轴的弦是最短的弦,长为,过焦点最长弦为长轴.
(2)过原点最长弦为长轴长2a,最短弦为短轴长2b.
(3)与椭圆+=1(a>b>0)有共同焦点的椭圆方程为+=1(λ>-b2).
(4)焦点三角形:椭圆上的点P(x0,y0)与两焦点F1,F2构成的△PF1F2叫做焦点三角形.若r1=|PF1|,r2=|PF2|,∠F1PF2=θ,△PF1F2的面积为S,则在椭圆+=1(a>b>0)中:
①当r1=r2,即点P为短轴端点时,θ最大;
②S=|PF1||PF2|sin θ=c|y0|,当|y0|=b,即点P为短轴端点时,S取得最大值,最大值为bc;
③△PF1F2的周长为2(a+c).
[澄清盲点误点]
一、关键点练明
1.(椭圆的定义)设P是椭圆+=1上的点,若F1,F2是椭圆的两个焦点,则+=(  )
A.4           B.8
C.6 D.18
解析:选C 由定义知|PF1|+|PF2|=2a=6.
2.(椭圆的离心率)椭圆+=1的离心率是(  )
A. B.
C. D.
解析:选B ∵椭圆方程为+=1,
∴a=3,c===.
∴e==.故选B.
3.(椭圆的方程)已知中心在原点的椭圆C的右焦点为F(1,0),离心率等于,则椭圆C的方程是(  )
A.+=1 B.+=1
C.+=1 D.+=1
解析:选D 依题意,设椭圆方程为+=1(a>b>0),
所以解得a2=9,b2=8.
故椭圆C的方程为+=1.
4.(求参数)椭圆x2+my2=1的焦点在y轴上,长轴长是短轴长的2倍,则m=________.
解析:椭圆x2+my2=1可化为x2+=1,因为其焦点在y轴上,所以a2=,b2=1,依题意知 =2,解得m=.
答案:
二、易错点练清
1.(忽视椭圆定义中2a>|F1F2|) 到两定点F1(-2,0)和F2(2,0)的距离之和为4的点的轨迹是(  )
A.椭圆 B.线段
C.圆 D.以上都不对
答案:B
2.(忽视对焦点位置的讨论)若椭圆的方程为+=1,且此椭圆的焦距为4,则实数a=________.
解析:①当焦点在x轴上时,10-a-(a-2)=22,解得a=4;②当焦点在y轴上时,a-2-(10-a)=22,解得a=8.
答案:4或8
3.(忽视椭圆上点的坐标满足的条件)已知点P是椭圆+=1上y轴右侧的一点,且以点P及焦点F1,F2为顶点的三角形的面积等于1,则点P的坐标为______________.
解析:设P(x,y),由题意知c2=a2-b2=5-4=1,所以c=1,则F1(-1,0),F2(1,0).由题意可得点P到x轴的距离为1,所以y=±1,把y=±1代入+=1,得x=±,又x>0,所以x=,所以P点坐标为或.
答案:或
考点一 椭圆定义的应用
考法(一) 利用定义求轨迹方程
[例1] (2021·济南调研)已知两圆C1:(x-4)2+y2=169,C2:(x+4)2+y2=9,动圆M在圆C1内部且和圆C1相内切,和圆C2相外切,则动圆圆心M的轨迹方程为(  )
A.-=1        B.+=1
C.-=1 D.+=1
[解析] 设圆M的半径为r,则|MC1|+|MC2|=(13-r)+(3+r)
内容来自帮提分https://www.sfbroad.com转载请标明出处.
相关文档