第四课时 证明及探索性问题
题型一 证明问题
例1 已知抛物线C:x2=-2py(p>0)经过点(2,-1).
(1)求抛物线C的方程及其准线方程.
(2)设O为原点,过抛物线C的焦点作斜率不为0的直线l交抛物线C于两点M,N,直线y=-1分别交直线OM,ON于点A和点B.求证:以AB为直径的圆经过y轴上的两个定点.
(1)解 由抛物线C:x2=-2py经过点(2,-1)得p=2.
所以抛物线C的方程为x2=-4y,其准线方程为y=1.
(2)证明 抛物线C的焦点为F(0,-1).
设直线l的方程为y=kx-1(k≠0).
由得x2+4kx-4=0.
设M(x1,y1),N(x2,y2),则x1x2=-4.
直线OM的方程为y=x.
令y=-1,得点A的横坐标xA=-,
同理得B的横坐标xB=-.
设点D(0,n),则=,
=,
·=+(n+1)2
=+(n+1)2
=+(n+1)2=-4+(n+1)2.
令·=0,即-4+(n+1)2=0,得n=1或n=-3.
综上,以AB为直径的圆经过y轴上的定点(0,1)和(0,-3).
感悟提升 圆锥曲线中的证明问题常见的有:
(1)位置关系方面的:如证明直线与曲线相切,直线间的平行、垂直,直线过定点等.
(2)数量关系方面的:如存在定值、恒成立、相等等.
在熟悉圆锥曲线的定义与性质的前提下,一般采用直接法,通过相关的代数运算证明,但有时也会用反证法证明.
训练1 (2021·合肥模拟)如图,圆C与x轴相切于点T(2,0),与y轴正半轴相交于两点M,N(点M在点N的下方),且|MN|=3.
(1)求圆C的方程;
(2)过点M任作一条直线与椭圆+=1相交于两点A,B,连接AN,BN,求证:∠ANM=∠BNM.
(1)解 设圆C的半径为r(r>0),依题意知,圆心C的坐标为(2,r).
因为|MN|=3,所以r2=+22=,
所以r=,圆C的方程为
(x-2)2+=.
(2)证明 把x=0代入方程(x-2)2+=,解得y=1或y=4,
即点M(0,1),N(0,4).
①当AB⊥x轴时,可知∠ANM=∠BNM=0.
②当AB与x轴不垂直时,可设直线AB的方程为y=kx+1.
联立方程消去y得,
(1+2k2)x2+4kx-6=0.
Δ=16k2+24(1+2k2)>0恒成立.
设直线AB交椭圆于A(x1,y1),B(x2,y2)两点,则x1+x2=,x1x2=,
所以kAN+kBN=+=+=
==0,
所以∠ANM=∠BNM.
综合①②知∠ANM=∠BNM.
题型二 探索性问题
例2 (2022·石家庄模拟)设中心在原点,焦点在x轴上的椭圆E过点,且离心率为,F为E的右焦点,P为E上一点,PF⊥x轴,圆F的半径为PF.
(1)求椭圆E和圆F的方程;
(2)若直线l:y=k(x-)(k>0)与圆F交于A,B两点,与椭圆E交于C,D两点,其中A,C在第一象限,是否存在k使|AC|=|BD|?若存在,求l的方程;若不存在,说明理由.
解 (1)由题意可设椭圆的标准方程为+=1(a>b>0),
∵椭圆的离心率e=,∴=,
∵a2=b2+c2,∴a=2b,
将点代入椭圆的方程得+=1,
联立a=2b,解得a=2且b=1.
∴椭圆E的方程为+y2=1.
∴F(,0),∵PF⊥x轴,∴P,
∴圆F的半径为,圆心为(,0),
∴圆F的方程为(x-)2+y2=.
(2)不存在满足题意的k,理由如下:
由A,B在圆上得
|AF|=|BF|=|PF|=.
设点C(x1,y1),D(x2,y2).
|CF|==2-x1,
同理|DF|=2-x2.
若|AC|=|BD|,
则|AC|+|BC|
=|BD|+|BC|,
即|AB|=|CD|=1,
4-(x1+x2)=1,
由得(4k2+1)x2-8k2x+12k2-4=0,
∴x1+x2=,∴4-=1,
得12k2=12k2+3,无解,故不存在.
感悟提升 此类问题一般分为探究条件、探究结论两种.若探究条件,则可先假设条件成立,再验证结论是否成立,成立则存在,否则不存在;若探究结论,则应先求出结论的表达式,再针对其表达式进行讨论,往往涉及对参数的讨论.
训练2 椭圆+=1(a>b>0)的左、右焦点分别为F1,F2,右顶点为A,上顶点为B,且满足向量·=0.
(1)若A(2,0),求椭圆的标准方程.
(2)设P为椭圆上异于顶点的点,以线段PB为直径的圆经过点F1,则是否存在过点F2的直线与该圆相切?若存在,求出其斜率;若不存在,请说明理由.
解 (1)易知a=2,因为·=0,
所以△BF1F2为