下载此文档

人教高中数学第一课时 不等式恒(能)成立问题.doc


高中 高三 上学期 数学 人教版

1340阅读234下载15页293 KB

下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
下载所得到的文件列表
人教高中数学第一课时 不等式恒(能)成立问题.doc
文档介绍:
第一课时 不等式恒(能)成立问题
 题型一 分离参数法求参数范围
例1 (2020·全国Ⅰ卷)已知函数f(x)=ex+ax2-x.
(1)当a=1时,讨论f(x)的单调性;
(2)当x≥0时,f(x)≥x3+1,求a的取值范围.
解 (1)当a=1时,f(x)=ex+x2-x,x∈R,
f′(x)=ex+2x-1.
故当x∈(-∞,0)时,f′(x)<0;
当x∈(0,+∞)时,f′(x)>0.
所以f(x)在(-∞,0)单调递减,在(0,+∞)单调递增.
(2)由f(x)≥x3+1得,
ex+ax2-x≥x3+1,其中x≥0,
①当x=0时,不等式为1≥1,显然成立,此时a∈R.
②当x>0时,分离参数a,
得a≥-,
记g(x)=-,
g′(x)=-.
令h(x)=ex-x2-x-1(x>0),
则h′(x)=ex-x-1,令H(x)=ex-x-1,
H′(x)=ex-1>0,
故h′(x)在(0,+∞)上是增函数,
因此h′(x)>h′(0)=0,故函数h(x)在(0,+∞)上递增,
∴h(x)>h(0)=0,即ex-x2-x-1>0恒成立,
故当x∈(0,2)时,g′(x)>0,g(x)单调递增;
当x∈(2,+∞)时,g′(x)<0,g(x)单调递减.
因此,g(x)max=g(2)=,
综上可得,实数a的取值范围是
.
感悟提升 分离参数法解决恒(能)成立问题的策略
(1)分离变量.构造函数,直接把问题转化为函数的最值问题.
(2)a≥f(x)恒成立⇔a≥f(x)max;
a≤f(x)恒成立⇔a≤f(x)min;
a≥f(x)能成立⇔a≥f(x)min;
a≤f(x)能成立⇔a≤f(x)max.
训练1 已知函数f(x)=.
(1)若函数f(x)在区间上存在极值,求正实数a的取值范围;
(2)如果当x≥1时,不等式f(x)-≥0恒成立,求实数k的取值范围.
解 (1)函数的定义域为(0,+∞),
f′(x)==-,
令f′(x)=0,得x=1.
当x∈(0,1)时,f′(x)>0,f(x)单调递增;
当x∈(1,+∞)时,f′(x)<0,f(x)单调递减.
所以x=1为函数f(x)的极大值点,且是唯一极值点,
所以0<a<1<a+,
故<a<1,即实数a的取值范围为.
(2)原不等式可化为当x≥1时,k≤恒成立,
令g(x)=(x≥1),
则g′(x)=
=.
再令h(x)=x-ln x(x≥1),
则h′(x)=1-≥0,
所以h(x)≥h(1)=1,所以g′(x)>0,
所以g(x)为增函数,
所以g(x)≥g(1)=2,
故k≤2,即实数k的取值范围是(-∞,2].
 题型二 分类讨论法求参数范围
例2 已知函数f(x)=ex-1-ax+ln x(a∈R).
(1)若函数f(x)在x=1处的切线与直线3x-y=0平行,求a的值;
(2)若不等式f(x)≥ln x-a+1对一切x∈[1,+∞)恒成立,求实数a的取值范围.
解 (1)f′(x)=ex-1-a+,
∴f′(1)=2-a=3,
∴a=-1,
经检验a=-1满足题意,
∴a=-1,
(2)f(x)≥ln x-a+1可化为ex-1-ax+a-1≥0,
令φ(x)=ex-1-ax+a-1,
则当x∈[1,+∞)时,φ(x)min≥0,
∵φ′(x)=ex-1-a,
①当a≤0时,φ′(x)>0,
∴φ(x)在[1,+∞)上单调递增,
∴φ(x)min=φ(1)=1-a+a-1=0≥0恒成立,
∴a≤0符合题意.
②当a>0时,令φ′(x)=0,得x=ln a+1.
当x∈(-∞,ln a+1)时,φ′(x)<0,
当x∈(ln a+1,+∞)时,φ′(x)>0,
∴φ(x)在(-∞,ln a+1)上单调递减,
在(ln a+1,+∞)上单调递增.
当ln a+1≤1,即0<a≤1时,φ(x)在[1,+∞)上单调递增,φ(x)min=φ(1)=0≥0恒成立,
∴0<a≤1符合题意.
当ln a+1>1,即a>1时,φ(x)在[1,ln a+1)上单调递减,在(ln a+1,+∞)上单调递增,
∴φ(x)min=φ(ln a+1)<φ(1)=0与φ(x)≥0矛盾.
故a>1不符合题意.
综上,实数a的取值范围为{a|a≤1}.
感悟提升 根据不等式恒成立求参数范围的关键是将恒成立问题转化为最值问题,此类问题关键是对参数分类讨论,在参数的每一段上求函数的最值,并判断是否满足题意,若不满足题意,只需找一个值或一段内的函数值不满足题意即可.
训练2 已知函数f(x)=ln x-
内容来自帮提分https://www.sfbroad.com转载请标明出处.
相关文档