下载此文档

人教高中数学解密10 导数在函数中的应用 (解析版).docx


高中 高三 上学期 数学 人教版

1340阅读234下载48页2.80 MB

下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
下载所得到的文件列表
人教高中数学解密10 导数在函数中的应用 (解析版).docx
文档介绍:
解密10讲:导数在函数中的应用
【考点解密】
1.导数的概念
(1)如果当Δx→0时,平均变化率无限趋近于一个确定的值,即有极根,则称y=f(x)在x=x0处可导,
并把这个确定的值叫做y=f(x)在x=x0处的导数(也称瞬时变化率),记作f′(x0)或,
即f′(x0)==.
(2)当x=x0时,f′(x0)是一个唯一确定的数,当x变化时,y=f′(x)就是x的函数,我们称它为y=f(x)的导函数(简称导数),记为f′(x)(或y′),即f′(x)=y′=.
2.导数的几何意义
函数y=f(x)在x=x0处的导数的几何意义就是曲线y=f(x)在点P(x0,f(x0))处的切线的斜率,
相应的切线方程为y-f(x0)=f′(x0)(x-x0).
3.基本初等函数的导数公式
基本初等函数
导函数
f(x)=c(c为常数)
f′(x)=0
f(x)=xα(α∈Q,α≠0)
f′(x)=αxα-1
f(x)=sin x
f′(x)=cos x
f(x)=cos x
f′(x)=-sin x
f(x)=ax(a>0且a≠1)
f′(x)=axln a
f(x)=ex
f′(x)=ex
f(x)=logax(a>0且a≠1)
f′(x)=
f(x)=ln x
f′(x)=
4.导数的运算法则
若f′(x),g′(x)存在,则有
[f(x)±g(x)]′=f′(x)±g′(x);
[f(x)g(x)]′=f′(x)g(x)+f(x)g′(x);
′=(g(x)≠0);
[cf(x)]′=cf′(x).
5.复合函数的定义及其导数
(1)一般地,对于两个函数y=f(u)和u=g(x),如果通过中间变量u,y可以表示成x的函数,那么称这个函数为函数y=f(u)与u=g(x)的复合函数,记作y=f(g(x)).
(2)复合函数y=f(g(x))的导数和函数y=f(u),u=g(x)的导数间的关系为y′x=y′u·u′x,即y对x的导数等于y对u的导数与u对x的导数的乘积.
6.函数的单调性与导数的关系
条件
恒有
结论
函数y=f(x)在区间(a,b)上可导
f′(x)>0
f(x)在(a,b)上单调递增
f′(x)<0
f(x)在(a,b)上单调递减
f′(x)=0
f(x)在(a,b)上是常数函数
7.利用导数判断函数单调性的步骤
第1步,确定函数的定义域;
第2步,求出导数f′(x)的零点;
第3步,用f′(x)的零点将f(x)的定义域划分为若干个区间,列表给出f′(x)在各区间上的正负,由此得出函数
y=f(x)在定义域内的单调性.
8.函数的极值
(1)函数的极小值:
函数y=f(x)在点x=a的函数值f(a)比它在点x=a附近其他点的函数值都小,f′(a)=0;而且在点x=a附近的左侧f′(x)<0,右侧f′(x)>0.则a叫做函数y=f(x)的极小值点,f(a)叫做函数y=f(x)的极小值.
(2)函数的极大值:
函数y=f(x)在点x=b的函数值f(b)比它在点x=b附近其他点的函数值都大,f′(b)=0;而且在点x=b附近的左侧f′(x)>0,右侧f′(x)<0.则b叫做函数y=f(x)的极大值点,f(b)叫做函数y=f(x)的极大值.
(3)极小值点、极大值点统称为极值点,极小值和极大值统称为极值.
9.函数的最大(小)值
(1)函数f(x)在区间[a,b]上有最值的条件:
如果在区间[a,b]上函数y=f(x)的图象是一条连续不断的曲线,那么它必有最大值和最小值.
(2)求y=f(x)在区间[a,b]上的最大(小)值的步骤:
①求函数y=f(x)在区间(a,b)上的极值;
②将函数y=f(x)的各极值与端点处的函数值f(a),f(b)比较,其中最大的一个是最大值,最小的一个是最小值.
【方法技巧】
1.(1)处理与切线有关的参数问题,关键是根据曲线、切线、切点的三个关系列出参数的方程:
①切点处的导数是切线的斜率;②切点在切线上;③切点在曲线上.
(2)注意区分“在点P处的切线”与“过点P处的切线”:在“点P处的切线”,说明点P为切点,点P既在曲线上,又在切线上;“过点P处的切线”,说明点P不一定是切点,点P一定在切线上,不一定在曲线上.
2.根据函数单调性求参数的一般思路
(1)利用集合间的包含关系处理:y=f(x)在(a,b)上单调,则区间(a,b)是相应单调区间的子集.
(2)f(x)为增(减)函数的充要条件是对任意的x∈(a,b)
内容来自帮提分https://www.sfbroad.com转载请标明出处.
相关文档