下载此文档

人教高中数学课时跟踪检测(四十) 直线的倾斜角与斜率、直线的方程 作业.doc


高中 高三 上学期 数学 人教版

1340阅读234下载7页137 KB

下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
下载所得到的文件列表
人教高中数学课时跟踪检测(四十) 直线的倾斜角与斜率、直线的方程 作业.doc
文档介绍:
课时跟踪检测(四十) 直线的倾斜角与斜率、直线的方程
一、基础练——练手感熟练度
1.直线l的方程为 x+3y-1=0,则直线l的倾斜角为(  )
A.150°           B.120°
C.60° D.30°
解析:选A 由直线l的方程为x+3y-1=0可得直线l的斜率为k=-,设直线l的倾斜角为α(0°≤α<180°),则tan α=-,所以α=150°.故选A.
2.过点A(0,2)且倾斜角的正弦值是的直线方程为(  )
A.3x-5y+10=0
B.3x-4y+8=0
C.3x+4y+10=0
D.3x-4y+8=0或3x+4y-8=0
解析:选D 设所求直线的倾斜角为α,则sin α=,∴tan α=±,∴所求直线方程为y=±x+2,即为3x-4y+8=0或3x+4y-8=0.故选D.
3.在同一平面直角坐标系中,直线l1:ax+y+b=0和直线l2:bx+y+a=0有可能是(  )
解析:选B 由题意l1:y=-ax-b,l2:y=-bx-a,当a>0,b>0时,-a<0, -b<0.选项B符合.
4.已知直线l的斜率为,在y轴上的截距为另一条直线x-2y-4=0的斜率的倒数,则直线l的方程为(  )
A.y=x+2 B.y=x-2
C.y=x+ D.y=-x+2
解析:选A ∵直线x-2y-4=0的斜率为,
∴直线l在y轴上的截距为2,
∴直线l的方程为y=x+2,故选A.
5.已知直线l经过A(2,1),B(1,m2)两点(m∈R),那么直线l的倾斜角的取值范围是(  )
A.[0,π) B.∪
C. D.∪
解析:选B 直线l的斜率k==1-m2,因为m∈R,所以k∈(-∞,1],所以直线的倾斜角的取值范围是∪.
6.已知e是自然对数的底数,函数f(x)=(x-1)ex+3e的图象在点(1,f(1))处的切线为l,则直线l的横截距为________.
解析:因为f′(x)=ex+(x-1)ex=xex,所以切线l的斜率为f′(1)=e,由f(1)=3e知切点坐标为(1,3e),所以切线l的方程为y-3e=e(x-1).令y=0,解得x=-2,故直线l的横截距为-2.
答案:-2
二、综合练——练思维敏锐度
1.已知三点A(2,-3),B(4,3),C在同一条直线上,则k的值为(  )
A.12 B.9
C.-12 D.9或12
解析:选A 由kAB=kAC,得=,
解得k=12.故选A.
2.若直线l与直线y=1,x=7分别交于点P,Q,且线段PQ的中点坐标为(1,-1),则直线l的斜率为(  )
A. B.-
C.- D.
解析:选B 依题意,设点P(a,1),Q(7,b),则有解得从而可知直线l的斜率为=-.故选B.
3.过点(2,1)且倾斜角比直线y=-x-1的倾斜角小的直线方程是(  )
A.x=2 B.y=1
C.x=1 D.y=2
解析:选A ∵直线y=-x-1的斜率为-1,则倾斜角为,依题意,所求直线的倾斜角为-=,∴斜率不存在,∴过点(2,1)的直线方程为x=2.
4.若k,-1,b三个数成等差数列,则直线y=kx+b必经过定点(  )
内容来自帮提分https://www.sfbroad.com转载请标明出处.
相关文档