下载此文档

人教高中数学课时跟踪检测(四十八) 4大策略找到解题突破口 作业.doc


高中 高三 上学期 数学 人教版

1340阅读234下载5页107 KB

下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
下载所得到的文件列表
人教高中数学课时跟踪检测(四十八) 4大策略找到解题突破口 作业.doc
文档介绍:
课时跟踪检测(四十八) 4大策略找到解题突破口
1.在直角坐标系xOy中,抛物线C:x2=6y与直线l:y=kx+3交于M,N两点.
(1)设M,N到y轴的距离分别为d1,d2,证明:d1与d2的乘积为定值;
(2)y轴上是否存在点P,当k变化时,总有∠OPM=∠OPN?若存在,求点P的坐标;若不存在,请说明理由.
解:(1)证明:将y=kx+3代入x2=6y,得x2-6kx-18=0.
设M(x1,y1),N(x2,y2),则x1x2=-18,
从而d1d2=|x1|·|x2|=|x1x2|=18为定值.
(2)存在符合题意的点,证明如下:
设P(0,b)为符合题意的点,直线PM,PN的斜率分别为k1,k2.
从而k1+k2=+==.
当b=-3时,有k1+k2=0对任意k恒成立,则直线PM的倾斜角与直线PN的倾斜角互补,故∠OPM=∠OPN,所以点P(0,-3)符合题意.
2.已知椭圆C:+=1(a>b>0)的短轴长为2,离心率为,点A(3,0),P是C上的动点,F为C的左焦点.
(1)求椭圆C的方程;
(2)若点P在y轴的右侧,以AP为底边的等腰△ABP的顶点B在y轴上,求四边形FPAB面积的最小值.
解:(1)依题意得解得
∴椭圆C的方程是+=1.
(2)设P(x0,y0)(-<y0<,y0≠0,x0>0),
设线段AP中点为M,又A(3,0),
∴AP中点M,直线AP的斜率为,
由△ABP是以AP为底边的等腰三角形,可得BM⊥AP,
∴直线AP的垂直平分线方程为
y-=-,
令x=0得B,
∵+=1,∴B,
由F(-2,0),∴四边形FPAB的面积S=(|y0|+)=≥5,
当且仅当2|y0|=,即y0=±时等号成立,
四边形FPAB面积的最小值为5.
3.(2021年1月新高考八省联考卷)双曲线C:-=1(a>0,b>0)的左顶点为A,右焦点为F,动点B在C上.当BF⊥AF时,|AF|=|BF|.
(1)求C的离心率;
(2)若B在第一象限,证明:∠BFA=2∠BAF.
解:(1)当|BF|=|AF|,且BF⊥AF时,
有c+a==,所以a=c-a,解得e=2.
(2)证明:由(1)知双曲线方程为-=1,
设B(x,y)(x>0,y>0)易知渐近线方程为y=±x,
所以∠BAF∈,∠BFA∈,当x>a,x≠2a时,则kAB=,kBF=.
设∠BAF=θ,则tan θ=,tan 2θ========-kBF=tan∠BFA.
因为2∠BAF∈,所以∠BFA=2∠BAF.
当x=2a时,由(1)可得∠BFA=,∠BAF=,
故∠BFA=2∠BAF.综上,∠BFA=2∠BAF.
4.已知椭圆W: +=1的长轴长为4,左、右顶点分别为A,B,经过点P(n,0)的直线与椭圆W相交于不同的两点C,D(不与点A,B重合).
(1)当n=0,且直线CD⊥x轴时, 求四边形ACBD的面积;
(2)设n=1,直线CB与直线x=4相交于点M,求证:A,D,M三点共线.
解:(1)由题意,得a2=4m=4, 解得m=1.
所以椭圆W方程为+y2=1.
当n=0及直线CD⊥ x轴时,易得C(0,1),D(0,-1).
且A(-2,0
内容来自帮提分https://www.sfbroad.com转载请标明出处.
相关文档