下载此文档

专题08 数列-2021年高考真题和模拟题数学(文)分项汇编(人教版)(解析版).doc


高中 高三 上学期 数学 人教版

1340阅读234下载36页3.39 MB

下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
下载所得到的文件列表
专题08 数列-2021年高考真题和模拟题数学(文)分项汇编(人教版)(解析版).doc
文档介绍:
专题08 数列
1.(2021·全国高考真题(文))记为等比数列的前n项和.若,,则( )
A.7 B.8 C.9 D.10
【答案】A
【分析】根据题目条件可得,,成等比数列,从而求出,进一步求出答案.
【详解】∵为等比数列的前n项和,
∴,,成等比数列
∴,
∴,
∴.
故选:A.
2.(2021·北京高考真题)和是两个等差数列,其中为常值,,,,则( )
A. B. C. D.
【答案】B
【分析】由已知条件求出的值,利用等差中项的性质可求得的值.
【详解】由已知条件可得,则,因此,.
故选:B.
3.(2021·北京高考真题)数列是递增的整数数列,且,,则的最大值为( )
A.9 B.10 C.11 D.12
【答案】C
【分析】使数列首项、递增幅度均最小,结合等差数列的通项及求和公式即可得解.
【详解】若要使n尽可能的大,则,递增幅度要尽可能小,
不妨设数列是首项为3,公差为1的等差数列,其前n项和为,
则,,,
所以n的最大值为11.
故选:C.
4.(2021·浙江高考真题)已知,函数.若成等比数列,则平面上点的轨迹是( )
A.直线和圆 B.直线和椭圆 C.直线和双曲线 D.直线和抛物线
【答案】C
【分析】首先利用等比数列得到等式,然后对所得的等式进行恒等变形即可确定其轨迹方程.
【详解】由题意得,即,
对其进行整理变形:




所以或,
其中为双曲线,为直线.
故选:C.
【点睛】关键点点睛:本题考查轨迹方程,关键之处在于由题意对所得的等式进行恒等变形,提现了核心素养中的逻辑推理素养和数学运算素养,属于中等题.
5.(2021·浙江高考真题)已知数列满足.记数列的前n项和为,则( )
A. B. C. D.
【答案】A
【分析】显然可知,,利用倒数法得到,再放缩可得,由累加法可得,进而由局部放缩可得,然后利用累乘法求得,最后根据裂项相消法即可得到,从而得解.
【详解】因为,所以,.

,即
根据累加法可得,,当且仅当时取等号,

由累乘法可得,当且仅当时取等号,
由裂项求和法得:
所以,即.
故选:A.
【点睛】本题解题关键是通过倒数法先找到的不等关系,再由累加法可求得,由题目条件可知要证小于某数,从而通过局部放缩得到的不等关系,改变不等式的方向得到
,最后由裂项相消法求得.
6.(2021·全国高考真题)设正整数,其中,记.则( )
A. B.
C. D.
【答案】ACD
【分析】利用的定义可判断ACD选项的正误,利用特殊值法可判断B选项的正误.
【详解】对于A选项,,,
所以,,A选项正确;
对于B选项,取,,,
而,则,即,B选项错误;
对于C选项,,
所以,,

所以,,因此,,C选项正确;
对于D选项,,故,D选项正确.
故选:ACD.
7.(2021·江苏高考真题)已知等比数列的公比为,且,,成等差数列,则的值是___________.
【答案】4
【分析】根据三数成等差数列列等式,再将,用含和的式子表示,代入等式求解.
【详解】因为为等比数列,且公比为,
所以,且,.
因为,,成等差数列,
所以,
有,,
解得.
故答案为:.
8.(2021·全国高考真题)记是公差不为0的等差数列的前n项和,若.
(1)求数列的通项公式;
(2)求使成立的n的最小值.
【答案】(1);(2)7.
【分析】(1)由题意首先求得的值,然后结合题意求得数列的公差即可确定数列的通项公式;
(2)首先求得前n项和的表达式,然后求解二次不等式即可确定n的最小值.
【详解】(1)由等差数列的性质可得:,则:,
设等差数列的公差为,从而有:,

从而:,由于公差不为零,故:,
数列的通项公式为:.
(2)由数列的通项公式可得:,则:,
则不等式即:,整理可得:,
解得:或,又为正整数,故的最小值为.
【点睛】等差数列基本量的求解是等差数列中的一类基本问题,解决这类问题的关键在于熟练掌握等差数列的有关公式并能灵活运用.
9.(2021·浙江高考真题)已知数列的前n项和为,,且.
(1)求数列的通项;
(2)设数列满足,记的前n项和为,若对任意恒成立,求的范围.
【答案】(1);(2).
【分析】(1)由,结合与的关系,分讨论,得到数列为等比数列,即可得出结论;
(2)由结合的结论,利用错位相减法求出,对任意恒成立,分类讨论分离参数,转化为与关于的函数的范围关系,即可求解.
【详解】(1)当时,,

当时,
内容来自帮提分https://www.sfbroad.com转载请标明出处.
相关文档