下载此文档

人教专题1.1 集合 2022年高考数学一轮复习讲练测(讲)解析版.docx


高中 高三 上学期 数学 人教版

1340阅读234下载11页280 KB

下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
下载所得到的文件列表
人教专题1.1 集合 2022年高考数学一轮复习讲练测(讲)解析版.docx
文档介绍:
专题1.1 集合
新课程考试要求
1.了解集合的含义,体会元素与集合的属于关系;能用自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题;
2.理解集合之间包含与相等的含义,能识别给定集合的子集;在具体情境中了解全集与空集的含义;
3.理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集;理解在给定集合中一个子集的补集的含义,会求给定子集的补集;能使用韦恩(Venn)图表达集合间的基本关系及集合的基本运算.
核心素养
培养学生逻辑推理(例9)、数学运算(例2、例7)、直观想象能力(例1)
考向预测
1.集合的基本概念
2.集合间的基本关系
3.集合的基本运算
4.集合中的新定义问题
【知识清单】
1.元素与集合
(1)集合元素的特性:确定性、互异性、无序性.
(2)集合与元素的关系:若a属于集合A,记作;若b不属于集合A,记作.
(3)集合的表示方法:列举法、描述法、图示法.
(4)五个特定的集合及其关系图:
N*或N+表示正整数集,N表示自然数集,Z表示整数集,Q表示有理数集,R表示实数集.
2.集合间的基本关系
(1)子集:若对任意x∈A,都有x∈B,则A⊆B或B⊇A.
(2)真子集:若A⊆B,且集合B中至少有一个元素不属于集合A,则AB或BA.
(3)相等:若A⊆B,且B⊆A,则A=B.
(4)空集的性质:∅是任何集合的子集,是任何非空集合的真子集.
3.集合的基本运算
集合的并集
集合的交集
集合的补集
符号表示
A∪B
A∩B
若全集为U,则集合A的补集为CUA
图形表示
集合表示
{x|x∈A,或x∈B}
{x|x∈A,且x∈B}
{x|x∈U,且x∉A}
求集合A的补集的前提是“A是全集U的子集”,集合A其实是给定的条件.从全集U中取出集合A的全部元素,剩下的元素构成的集合即为CUA.
4.集合的运算性质
(1)A∩A=A,A∩∅=∅,A∩B=B∩A.
(2)A∪A=A,A∪∅=A,A∪B=B∪A.
(3)A∩(CUA)=∅,A∪(CUA)=U,CU(CUA)=A.
特别提醒:
1.若有限集A中有n个元素,则A的子集有2n个,真子集有2n-1个.
2.子集的传递性:A⊆B,B⊆C⇒A⊆C.
3.A⊆B⇔A∩B=A⇔A∪B=B⇔CUA⊇CUB.
4. CU(A∩B)=(CUA)∪(CUB),CU(A∪B)=(CUA)∩(CUB).
【考点分类剖析】
考点一 集合的基本概念
例1.(2018课标II理2)已知集合,则中元素的个数为 ( )
A.9 B.8 C.5 D.4
【答案】A
方法二:根据集合A的元素特征及圆的方程在坐标系中作出图形,如图,易知在圆x2+y2=3中有9个整点,即为集合A的元素个数,故选A.
【规律方法】与集合中的元素有关的问题的三种求解策略
(1)研究一个用描述法表示的集合时,首先要看集合中的代表元素,然后再看元素的限制条件.
(2)根据元素与集合的关系求参数时要注意检验集合中的元素是否满足互异性.
(3)集合中的元素与方程有关时注意一次方程和一元二次方程的区别.
【变式探究】(2020·巴楚县第一中学高三二模)已知集合,,则集合中元素的个数为( )
A.1个 B.2个 C.3个 D.4个
【答案】C
【解析】
根据集合列举求解.
【详解】
因为集合,,
所以集合,
故选:C
【领悟技法】
与集合元素有关问题的思路:
(1)确定集合的元素是什么,即确定这个集合是数集还是点集.
(2)看这些元素满足什么限制条件.
(3)根据限制条件列式求参数的值或确定集合元素的个数,但要注意检验集合是否满足元素的互异性
考点二:集合间的基本关系
例2.(2012·湖北省高考真题(文))已知集合,则满足条件的集合的个数为( )
A.1 B.2 C.3 D.4
【答案】D
【解析】
求解一元二次方程,得
,易知.
因为,所以根据子集的定义,
集合必须含有元素1,2,且可能含有元素3,4,
原题即求集合的子集个数,即有个,故选D.
【方法技巧】
(1)判断两集合之间的关系的方法:当两集合不含参数时,可直接利用数轴、图示法进行判断;当集合中含有参数时,需要对满足条件的参数进行分类讨论或采用列举法.
(2)要确定非空集合A的子集的个数,需先确定集合A中的元素的个数,再求解.不要忽略任何非空集合是它自身的子集.
(3)根据集合间的关系求参数值(或取值范围)的关键是将条件转化为元素或区间端点间的关系,进而转化为参数所满足的关系,常
内容来自帮提分https://www.sfbroad.com转载请标明出处.
相关文档