下载此文档

人教版专题36 高考新题型劣构性试题综合问题(新高考通用)解析版.docx


高中 高三 上学期 数学 人教版

1340阅读234下载48页2.61 MB

下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
下载所得到的文件列表
人教版专题36 高考新题型劣构性试题综合问题(新高考通用)解析版.docx
文档介绍:
试卷第1页,共43页
【冲刺985、211名校之2023届新高考题型模拟训练】
专题36 高考新题型劣构性试题综合问题(新高考通用)
1.(2023·云南红河·统考一模)在①,②这两个条件中任选一个,补充到下面横线上,并解答.
记△ABC的内角A,B,C的对边分别为a,b,c,且 .
(1)求;
(2)若,,求△ABC的面积.
(注:如果选择多个条件分别解答,则按第一个解答计分.)
【答案】(1)
(2)
【分析】(1)选①,由正弦定理得到,再由余弦定理得到,求出;选②,由正弦定理变形得到,结合正弦和角公式,诱导公式求出,得到;
(2)由求出,由,结合第一问结论得到,求出,利用三角形面积公式求出答案.
【详解】(1)选①,由正弦定理,得.
所以.
化简为.
由余弦定理.
由于
所以.
选②.由正弦定理.,
得.
试卷第1页,共43页
化简得,
由两角和的正弦公式得.
由诱导公式化简得.
因为,,
所以,,所以.
由于
所以.
(2),即.
由(1)知:,
所以,
因为,,
所以.
即△ABC为边长是4的等边三角形.

2.(2023·江苏泰州·统考一模)在①成等比数列,②,③这三个条件中任选两个,补充在下面问题中,并完成解答.
已知数列是公差不为0的等差数列,其前项和为,且满足__________,__________.
(1)求的通项公式;
(2)求.
注:如果选择多个方案分别解答,按第一个方案计分.
【答案】(1)选①②,①③或②③均可得
(2)
【分析】(1)选出两个条件,根据等差数列通项公式和求和公式基本量计算出首项和公差,得到通项公式;
试卷第1页,共43页
(2)在第一问的基础上,得到,利用裂项相消法求和.
【详解】(1)若选①②,设公差为,
则,
解得:,

选①③,设公差为,

解得:,

选②③,设公差为,

解得:,

(2),
.
3.(2022秋·山东聊城·高三山东聊城一中校考期末)记的内角的对边分别为.已知.
(1)求A;
(2)从下面的三组条件中选择一组作为已知条件,使得存在且唯一确定,求的面积.
①;②;③边上的高.
试卷第1页,共43页
【答案】(1)
(2)答案见解析
【分析】(1)先利用正弦定理进行边化角,再根据三角恒等变换运算求解;(2)若选①:根据题意结合正弦定理可得,不成立;若选②:根据题意可判断存在且唯一确定,结合直角三角形的性质运算求解;若选③:根据题意结合面积公式可得,再利用余弦定理求,结合面积公式运算求解.
【详解】(1)已知,
由正弦定理得,
化简得.
因为,所以,因为,所以.
(2)若选①:.由正弦定理,可得,无解;
若选②:.已知,则,此时存在且唯一确定,
则,
∴的面积;
若选③:边上的高,可得,解得,
又∵,由余弦定理可得,则,解得或(舍去),
此时存在且唯一确定,
∴的面积.
4.(2023·山东潍坊·统考一模)在①;②;③这三个条件中任选一个,补充在下面问题中并作答.
问题:在中,角所对的边分别为,且__________.
(1)求角的大小;
(2)已知,且角有两解,求的范围.
【答案】(1)答案见解析
(2)
试卷第1页,共43页
【分析】(1)若选①,由两角和的正切公式化简即可求出求角的大小;若选②,利用正弦定理统一为角的三角函数,再由两角和的正弦公式即可求解;若选③,由余弦定理代入化简即可得出答案.
(2)将代入正弦定理可得,要使角有两解,即,解不等式即可得出答案.
【详解】(1)若选①:整理得,因为,
所以,因为,所以;
若选②:因为,
由正弦定理得,
所以,所以,因为,所以;
若选③:由正弦定理整理得,所以,
即,因为,所以;
(2)将代入正弦定理,得,所以,
因为,角的解有两个,所以角的解也有两个,所以,
即,又,所以,解得.
5.(2023·辽宁沈阳·统考一模)在中,角、、的对边分别为、、.已知.
(1)求角的大小;
(2)给出以下三个条件:①,;②;③.
若这三个条件中仅有两个正确,请选出正确的条件并回答下面问题:
(i)求的值;
(ii)的角平分线交于点,求的长.
【答案】(1)
(2)(i);(ii).
试卷第1页,共43页
【分析】(1)由已知条件可得出的值,结合角的取值范围可求得角的值;
(2)由以及①或②或③解三角形,可得出正确的条件.
(i)求出的值,利用正弦定理可求得的值;(ii)由结合三角形的面积
内容来自帮提分https://www.sfbroad.com转载请标明出处.
相关文档