下载此文档

人教高中数学思想01 函数与方程思想(讲)【解析版】.docx


高中 高三 上学期 数学 人教版

1340阅读234下载28页1.66 MB

下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
下载所得到的文件列表
人教高中数学思想01 函数与方程思想(讲)【解析版】.docx
文档介绍:
第三篇 思想方法篇
思想01 函数与方程思想(讲)
考向速览
方法技巧 典例分析
1.函数与方程思想的含义
(1)函数思想是用运动和变化的观点分析和研究数学中的数量关系,是对函数概念的本质认识,建立函数关系或构造函数,运用函数的图象和性质去分析问题、转化问题,从而使问题获得解决的思想方法.
(2)方程思想就是分析数学问题中变量间的等量关系,建立方程或方程组,或者构造方程,通过解方程或方程组,或者运用方程的性质去分析、转化问题,使问题获得解决的思想方法.
(3) 函数与方程思想在一定的条件下是可以相互转化的,是相辅相成的.函数思想重在对问题进行动态的研究,方程思想则是在动中求静,研究运动中的等量关系.方程思想与函数思想密切相关:方程f(x)=0的解就是函数y=f(x)的图象与x轴交点的横坐标;函数y=f(x)也可以看作二元方程f(x)-y=0,通过方程进行研究;方程f(x)=a有解,当且仅当a属于函数f(x)的值域.函数与方程的这种相互转化关系十分重要.
2.高考把函数与方程思想作为思想方法的重点来考查,特别是在有关函数、三角函数、数列、不等式、解析几何、平面向量、立体几何等题目中.高考使用客观题考查函数与方程思想的基本运算,而在主观题中,则从更深的层次,在知识网络的交汇处,从思想方法与相关能力相结合的角度深入考查.
3.常见方法:
(1)运用函数相关概念的本质解题
在理解函数的定义域、值域、性质等本质的基础上,主动、准确地运用它们解答问题.常见问题有:求函数的定义域、解析式、最值,研究函数的性质.
(2)利用函数性质求解方程问题
函数与方程相互联系,借助函数的性质可以解决方程解的个数及参数取值范围的问题.
(3)构造函数解决一些数学问题
在一些数学问题的研究中,可以通过建立函数关系式,把要研究的问题转化为函数的性质,达到化繁为简,化难为易的效果.
01 函数与方程思想在方程、不等式中的应用
【核心提示】
1.函数与不等式的相互转化,对函数y=f(x),当y>0时,就化为不等式f(x)>0,借助于函数的图象和性质可解决有关问题,而研究函数的性质也离不开不等式.
2.含参不等式恒成立与存在性问题函数(方程)法是指通过构造函数,把恒成立问题与转化为函数的值域问题,从而得到关于参数的方程的方法.破解此类题的关键点:
①灵活转化:
(1)“关于的不等式在区间上恒成立”转化为“”;
“关于的不等式在区间上恒成立”转化为“”;
(2)“关于存在使得不等式成立”转化为“”;
“关于存在使得不等式成立”转化为“”;
②求函数值域,利用函数的单调性、导数、图象等求函数的值域;
③得出结论,列出参数所满足的方程,通过解方程,求出的值.
【典例分析】
典例1.(2022·浙江·统考高考真题)已知,若对任意,则(    )
A. B. C. D.
【答案】D
【分析】将问题转换为,再结合画图求解.
【详解】由题意有:对任意的,有恒成立.
设,,
即的图像恒在的上方(可重合),如下图所示:
由图可知,,,或,,
故选:D.
典例2.(2022·全国·统考高考真题)已知,则(    )
A. B. C. D.
【答案】A
【分析】法一:根据指对互化以及对数函数的单调性即可知,再利用基本不等式,换底公式可得,,然后由指数函数的单调性即可解出.
【详解】[方法一]:(指对数函数性质)
由可得,而,所以,即,所以.
又,所以,即,
所以.综上,.
[方法二]:【最优解】(构造函数)
由,可得.
根据的形式构造函数 ,则,
令,解得 ,由 知 .
在 上单调递增,所以 ,即 ,
又因为 ,所以 .
故选:A.
【整体点评】法一:通过基本不等式和换底公式以及对数函数的单调性比较,方法直接常用,属于通性通法;
法二:利用的形式构造函数,根据函数的单调性得出大小关系,简单明了,是该题的最优解.
典例3.【多选题】(2023·吉林通化·梅河口市第五中学校考一模)下列不等式成立的是(    )
A. B.
C. D.
【答案】BCD
【分析】对于选项A,运用指数函数、对数函数单调性比较即可;对于选项B,构造函数运用函数的单调性比较即可;对于选项C,作差后运用基本不等式判断;对于选项D,寻找中介值比较即可.
【详解】对于选项A,因为,所以,,
所以,故选项A错误;
对于选项B,设,则,
又因为,,
所以在上单调递增,在上单调递减,
所以,即:,
又因为,所以.故选项B正确;
对于选项C,,
因为,所以,
所以,即:.故选项C正确;
对于选项D,因为,所以,所以,
又因为,所以,所以,
内容来自帮提分https://www.sfbroad.com转载请标明出处.
相关文档