七年级下学期数学训练题一
1、推理填空:
如图: ① 若∠1=∠2,则 ∥ ( )
若∠DAB+∠ABC=1800,则 ∥ ( )
②当 ∥ 时,∠ C+∠ABC=1800 ( )
当 ∥ 时,∠3=∠C( )
2、如图,∠1=30°,AB⊥CD,垂足为O,EF经过点O.求∠2、∠3的度数.
3、已知:如图AB∥CD,EF交AB于G,交CD于F,FH平分∠EFD,交AB于H ,∠AGE=500,求:∠BHF的度数.
4、观察如图所示中的各图,寻找对顶角(不含平角):
(1)如图a,图中共有___对对顶角;
(2)如图b,图中共有___对对顶角;
图a
图b
图c
(3)如图c,图中共有___对对顶角.
(4)研究(1)~(3)小题中直线条数与对顶角的对数之间的关系,若有n条直线相交于一点,则可形成多少对对顶角?
(5)若有2008条直线相交于一点,则可形成 多少对对顶角?
5、已知,如图,CD⊥AB,GF⊥AB,∠B=∠ADE,试说明∠1=∠2.
6、在同一平面内的三条直线能把该平面分成几部分?并画出相应的图形.
7、如图,图中内错角的对数是多少对?
8、如图所示,AB∥ED,∠B=48°,∠D=42°, BC垂直于CD吗?下面给出两种添加辅助线的方法,请选择一种,对你作出的结论加以说明.
9、已知:如图,∠ADE=∠B,∠DEC=115°.
求∠C的度数.
10、已知:如图,AD∥BC,∠D=100°,AC平分∠BCD,
求∠DAC的度数.
参考答案
1、2、3、(略)
4、考点:对顶角、邻补角.
专题:规律型.
分析:由图示可得,(1)两条直线相交于一点,形成2对对顶角;
(2)三条直线相交于一点,形成6对对顶角,
(3)4条直线相交于一点,形成12对对顶角;
依次可找出规律:(4)若有n条直线相交于一点,则可形成(n-1)n对对顶角;
(5)将n=2008代入(n-1)n,可得2008条直线相交于一点可形成的对顶角的对数.
解答:解:(1)如图a,图中共有1×2=2对对顶角;
(2)如图b,图中共有2×3=6对对顶角;
(3)如图c,图中共有3×4=12对对顶角;
(4)研究(1)~(3)小题中直线条数与对顶角的对数之间的关系,
若有n条直线相交于一点,则可形成(n-1)n对对顶角;
(5)若有2008条直线相交于一点,则可形成(2008-1)×2008=4 030 056对对顶角.
点评:本题考查多条直线相交于一点,所形成的对顶角的个数的计算规律.即若有n条直线相交于一点,则可形成(n-1)n对对顶