下载此文档

北京市首师大附中人教版高一(下)期末数学试卷(解析版).zip


高中 高一 下学期 数学 人教版

1340阅读234下载19页204 KB

下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
下载所得到的文件列表
文档介绍:
2015-2016学年北京市首师大附中高一(下)期末数学试卷
 
一、选择题:本大题共8个小题,每小题4分,共32分.在每小题给出的四个选项中,只有一项是符合题目要求的.
1.命题“∃x0>0,2≤0”的否定是(  )
A.∀x>0,2x>0 B.∀x≤0,2x>0 C.∀x>0,2x<0 D.∀x≤0,2x<0
2.设l,m是两条不同的直线,α是一个平面,则下列命题正确的是(  )
A.若l⊥m,m⊂α,则l⊥α B.若l⊥α,l∥m,则m⊥α
C.若l∥α,m⊂α,则l∥m D.若l∥α,m∥α,则l∥m
3.在△ABC中,三个内角A,B,C的对边分别是a.b.c,已知B=30°,c=150,b=50,那么这个三角形是(  )
A.等边三角形 B.等腰三角形
C.直角三角形 D.等腰三角或直角三角形
4.如图所示的程序框图,若输出的S=31,则判断框内填入的条件是(  )
A.i>4? B.i>5? C.i≤4? D.i≤5?
5.设{an}(n∈N*)是等差数列,Sn是其前n项的和,且S5<S6,S6=S7>S8,则下列结论错误的是(  )
A.d<0 B.a7=0
C.S9>S5 D.S6与S7均为Sn的最大值
6.如图所示,E是正方形ABCD所在平面外一点,E在面ABCD上的正投影F恰在AC上,FG∥BC,AB=AE=2,∠EAB=60°,有以下四个命题:
(1)CD⊥面GEF;
(2)AG=1;
(3)以AC,AE作为邻边的平行四边形面积是8;
(4)∠EAD=60°.
其中正确命题的个数为(  )
A.1 B.2 C.3 D.4
7.下列命题中,正确的命题个数为(  )
①△ABC的三边分别为a,b,c,则该三角形是等边三角形的充要条件为a2+b2+c2=ab+ac+bc;
②数列{an}的前n项和为Sn,则Sn=An2+Bn是数列{an}为等差数列的充要条件;
③在数列{an}中,a1=1,Sn是其前n项和,满足Sn+1=Sn+2,则{an}是等比数列;
④已知a1,b1,c1,a2,b2,c2都是不等于零的实数,关于x的不等式a1x2+b1x+c1>0和a2x2+b2x+c2>0的解集分别为P,Q,则==是P=Q的充分必要条件.
A.1 B.2 C.3 D.4
8.如图,设P为正四面体A﹣BCD表面(含棱)上与顶点不重合的一点,由点P到四个顶点的距离组成的集合记为M,如果集合M中有且只有2个元素,那么符合条件的点P有(  )
A.4个 B.6个 C.10个 D.14个
 
二、填空题(共6小题,每题4分,满分24分,将答案填在答题纸上)
9.已知数列{an}的前n项和为Sn,an≠0(n∈N*),anan+1=Sn,则a3﹣a1=______.
10.执行如图所示的程序框图,输出的a值为______.
11.已知一个三棱锥的三视图如图所示,主视图和左视图都是腰长为1的等腰直角三角形,那么,这个三棱锥的表面积为______.
12.a>0,b>0,a+b=1,则+的最小值为______.
13.如图,四面体 ABCD的一条棱长为 x,其余棱长均为 1,记四面体 ABCD的体积为F(x),则函数F(x)的单调增区间是______;最大值为______.
14.在数列{an}中,若an2﹣an﹣12=p(n≥2,n∈N×,p为常数),则称{an}为“等方差数列”,下列是对“等方差数列”的判断;
①若{an}是等方差数列,则{an2}是等差数列;
②{(﹣1)n}是等方差数列;
③若{an}是等方差数列,则{akn}(k∈N*,k为常数)也是等方差数列;
④若{an}既是等方差数列,又是等差数列,则该数列为常数列.
其中正确命题序号为______.(将所有正确的命题序号填在横线上)
 
三、解答题(本大题共4小题,共44分.解答应写出文字说明、证明过程或演算步骤.)
15.已知p:>1,q:∃x∈R,ax2+ax﹣1≥0,r:(a﹣m)(a﹣m﹣1)>0.
(1)若p∧q为真,求实数a的取值范围;
(2)若¬p是¬r的必要不充分条件,求m的取值范围.
16.如图△ABC中,已知点D在BC边上,满足•=0.sin∠BAC=,AB=3,BD=.
(Ⅰ)求AD的长;
(Ⅱ)求cosC.
17.如图,在四棱锥P﹣ABCD中,底面ABCD是菱形,且∠ABC=120°,点E是棱PC的中点,平面ABE与棱PD交于点F.
(1)求证:AB∥EF;
(2)若PA=PD=AD=2,且平面PAD⊥平面ABCD,
求①二
内容来自帮提分https://www.sfbroad.com转载请标明出处.
相关文档