高中数学北师大版(2019)必修第一册第七章概率综合强化3
第I卷(选择题)
请点击修改第I卷的文字说明
一、单选题
1.青春因奉献而美丽,为了响应党的十九大关于“推动城乡义务教育一体化发展,高度重视农村义务教育”精神,现有5名师范大学毕业生主动要求赴西部某地区甲、乙、丙三个不同的学校去支教,每个学校至少去1人,则恰好有2名大学生分配去甲学校的概率为
A. B. C. D.
2.袋中有40个小球,其中红色球16个、蓝色球12个,白色球8个,黄色球4个,从中随机抽取10个球作成一个样本,则这个样本恰好是按分层抽样方法得到的概率为( )
A. B.
C. D.
3.在体育选修课排球模块基本功发球测试中,计分规则如下满分为10分:①每人可发球7次,每成功一次记1分;②若连续两次发球成功加分,连续三次发球成功加1分,连续四次发球成功加分,以此类推,,连续七次发球成功加3分假设某同学每次发球成功的概率为,且各次发球之间相互独立,则该同学在测试中恰好得5分的概率是( )
A. B. C. D.
4.已知,,为中不同数字的种类,如,求所有的个的排列所得的的平均值为
A. B. C. D.
5.某地一重点高中为让学生提高遵守交通的意识,每天都派出多名学生参加与交通相关的各类活动.现有包括甲、乙两人在内的6名中学生,自愿参加交通志愿者的服务工作这6名中学生中2人被分配到学校附近路口执勤,2人被分配到医院附近路口执勤,2人被分配到中心市场附近路口执勤,如果分配去向是随机的,则甲、乙两人被分配到同一路口的概率是( )
A. B. C. D.
6.连掷一枚均匀的骰子两次,所得向上的点数分别为,记,则下列说法正确的是
A.事件“”的概率为 B.事件“是奇数”与“”互为对立事件
C.事件“”与“”互为互斥事件 D.事件“”的概率为
二、多选题
7.4支足球队进行单循环比赛(任两支球队恰进行一场比赛),任两支球队之间胜率都是.单循环比赛结束,以获胜的场次数作为该队的成绩,成绩按从大到小排名次顺序,成绩相同则名次相同.下列结论中正确的是( )
A.恰有四支球队并列第一名为不可能事件 B.有可能出现恰有三支球队并列第一名
C.恰有两支球队并列第一名的概率为 D.只有一支球队名列第一名的概率为
第II卷(非选择题)
请点击修改第II卷的文字说明
三、填空题
8.某人有两盒火柴,每盒都有根火柴,每次用火柴时他在两盒中任取一盒并从中抽出一根,求他发现用完一盒时另一盒还有根()的概率_____.
9.甲罐中有5个红球,2个白球和3个黑球,乙罐中有4个红球,3个白球和3个黑球.先从甲罐中随机取出一球放入乙罐,分别以和表示由甲罐取出的球是红球,白球和黑球的事件;再从乙罐中随机取出一球,以表示由乙罐取出的球是红球的事件,则下列结论中正确的是________(写出所有正确结论的编号).
①;
②;
③事件与事件相互独立;
④是两两互斥的事件;
⑤的值不能确定,因为它与中哪一个发生有关
10.将给定的15个互不相同的实数,排成五行,第一行1个数,第二行2个数,第三行3个数,第四行4个数,第五行5个数,则每一行中的最大的数都小于后一行中最大的数的概率是________.
11.对于函数,其定义域为D,若对任意的,当时都有,则称函数为“不严格单调增函数”,若函数定义域为,值域为,则函数是“不严格单调增函数”的概率是_____________
四、解答题
12.某游戏公司对今年新开发的一些游戏进行评测,为了了解玩家对游戏的体验感,研究人员随机调查了300名玩家,对他们的游戏体验感进行测评,并将所得数据统计如图所示,其中.
(1)求这300名玩家测评分数的平均数;
(2)由于该公司近年来生产的游戏体验感较差,公司计划聘请3位游戏专家对游戏进行初测,如果3人中有2人或3人认为游戏需要改进,则公司将回收该款游戏进行改进;若3人中仅1人认为游戏需要改进,则公司将另外聘请2位专家二测,二测时,2人中至少有1人认为游戏需要改进的话,公司则将对该款游戏进行回收改进.已知该公司每款游戏被每位专家认为需要改进的概率为,且每款游戏之间改进与否相互独立.
(i)对该公司的任意一款游戏进行检测,求该款游戏需要改进的概率;
(ii)每款游戏聘请专家测试的费用均为300元/人,今年所有游戏的研发总费用为50万元,现对该公司今年研发的600款游戏都进行检测,假设公司的预算为110万元,判断这600款游戏所需的最高费用是否超过预算,并通过计算说明.
13.某省采用的“”模式新高考方案中,对化学、生物、地理和政治等四门选考科目,制定了计算转换分(即记入高