5.2 导数的运算
【题组一 初等函数求导】
1.(2018·全国高二课时练****求函数 y =
f ( x) = 2 + x 在下列各点处的导数.
x
(1) x = x0 ; (2) x = 1 ; (3) x = -2 .
【答案】(1)
2 +1
x
-
2
0
(2)-1 (3) 1
2
【解析】∵ f ( x) = 2 + x ,∴ f ¢( x) = - 2
x x2
+1 .
(1)当 x = x0
时, f ¢( x0
) = -
2 +1 .
x
2
0
(2)当 x = 1 时, f ¢(1) = - 2 +1 = -1.
12
(3)当 x = -2 时, f ¢(-2) = - 2 +1 = 1 .
(-2)2 2
2.求下列函数的导数:
x3
(1) y = ;
(2) y = cosæ p- x ö ;
ç 2 ÷
(3) y = (
è ø
3)x .
【答案】(1) 3
2
1
x 2 ;(2)
cos x
;(3) 1
2
x
(
)
3 ln 3
2
3 3 1
【解析】(1)y′=( x 2 )′= 2 x
(
(2)∵y=cos =sin x,∴y′=(sin x)′=cos x.
(3)y′=[( )x]′=( )xln = 1
2
3 )x ln3 .
3.(2020·海林市朝鲜族中学高二课时练****求下列函数的导数:
x
(1) y =
1 × cos x ;
(2) y = x æ x2 + 1 + 1 ö .
ç x x3 ÷
è ø
2x x
【答案】(1) - cos x + 2x sin x ;(2) 3x2 - 2
x3
【解析】(1)y′= ′= ′cos x+ (cos x)′=′cos x-sin x=-x- cos x-sin x=
- - sin x=- . (2)∵y=x =x3+1+ ,∴y′=3x2- .
4.(2020·海林市朝鲜族中学高二课时练****求下列函数的导数.
(1) f ( x) = 1 x3 - 1 x4 + 6 ;
3 2
(2)f(x)=(5x-4)cos x;
(3) f ( x) = ln x .
x
【答案】(1) x2 - 2x3 ;(2) 5cos x - 5x sin x + 4sin x ;(3) 1- ln x
x2
【解析】(1)∵ f ( x) = 1 x3 - 1 x4 + 6 ,∴ f '( x) = x2 - 2x3 .
3 2
(2)∵f(x)=(5x-4)cos x,
∴ f '( x) = éë(5x - 4)cos xùû ' = 5cosx - 5xsinx + 4sinx .
lnx
(3)∵ f ( x) =
,∴
x f ¢( x ) =
x (lnx ),- lnx
2
1 - lnx .
= 2
x x
【题组二 复合函数求导】
1.(2020·宁县第二中学高二期中(理))求下列函数的导数:
y = cos x
3
y = xnex
【答案】(1) y' = - 1 sin x ;(2) y' = ex xn -1 (x + n )
3 3
【解析】(1)Q y = cos x
,\ y' = -sin
x æ x ö'
×ç ÷
= - 1
sin x .
3 3 è 3 ø 3 3
(2)Q y = xnex ,\ y' = nxn-1ex + xnex = ex xn-1 (x + n )
2.(2020·江苏徐州·高二月考)求下列函数的导数.
f ( x) = ln x
x
(2) f ( x) = ( x2 + 9)æ x - 3 ö
ç x ÷
è ø
(3) f ( x) = 2x + ln (5x -1)
【答案】(1) f ' ( x) = 1 - ln x ;(2) f ' ( x ) = 3x2 + 27 + 6 ;(3) f ' ( x ) = 2x ln 2 + 5
x2 x2
5x - 1
' (ln x)' × x - ln x × ( x)' 1 - ln