下载此文档

高三数学人教A版选择性必修第一册阶段检测试卷1word版含答案.zip


高中 高三 上学期 数学 人教版

1340阅读234下载31页1.28 MB

下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
下载所得到的文件列表
文档介绍:
高中数学人教A版选择性必修第一册阶段检测试卷2
第I卷(选择题)
一、单选题
1.如图,在圆锥中,,是上的动点,是的直径,,是的两个三等分点,,记二面角,的平面角分别为,,若,则的最大值是( )
A. B. C. D.
2.在平面直线坐标系中,定义为两点的“切比雪夫距离”,又设点P及上任意一点Q,称的最小值为点P到直线的“切比雪夫距离”记作给出下列四个命题:( )
①对任意三点A、B、C,都有
②已知点P(3,1)和直线则
③到原点的“切比雪夫距离”等于的点的轨迹是正方形;
④定点动点满足则点P的轨迹与直线(为常数)有且仅有2个公共点.
其中真命题的个数是( )
A.4 B.3 C.2 D.1
3.已知二次函数交轴于两点(不重合),交轴于点. 圆过三点.下列说法正确的是
① 圆心在直线上;
② 的取值范围是;
③ 圆半径的最小值为;
④ 存在定点,使得圆恒过点.
A.①②③ B.①③④ C.②③ D.①④
4.已知直线:与椭圆:至多有一个公共点,则的取值范围是( )
A. B.
C. D.
5.已知点是抛物线的对称轴与准线的交点,点为抛物线的焦点,点在抛物线上且满足,若取最大值时,点恰好在以为焦点的双曲线上,则双曲线的离心率为
A. B. C. D.
6.的最小值为( )
A.5 B. C.6 D.
二、多选题
7.已知梯形,,,,是线段上的动点;将沿着所在的直线翻折成四面体,翻折的过程中下列选项中正确的是( )
A.不论何时,与都不可能垂直
B.存在某个位置,使得平面
C.直线与平面所成角存在最大值
D.四面体的外接球的表面积的最小值为
8.已知双曲线,为双曲线上一点,过点的切线为,双曲线的左右焦点,到直线的距离分别为,,则( )
A.
B.直线与双曲线渐近线的交点为,,则,,,四点共圆
C.该双曲线的共轭双曲线的方程为
D.过的弦长为5的直线有且只有1条
第II卷(非选择题)
请点击修改第II卷的文字说明
三、填空题
9.正方体的棱长为,平面,平面,则正方体在平面内的正投影面积为________.
10.已知函数,若集合,则实数的取值范围为___________.
11.已知,分别为双曲线的左、右焦点,以为直径的圆与双曲线在第一象限和第三象限的交点分别为,,设四边形的周长为,面积为,且满足,则该双曲线的离心率为______.
12.已知点和圆上两个不同的点,,满足,是弦的中点,
给出下列四个结论:
①的最小值是4;
②点的轨迹是一个圆;
③若点,点,则存在点,使得;
④△面积的最大值是.
其中所有正确结论的序号是________.
四、解答题
13.阿波罗尼斯是古希腊著名数学家,他的主要研究成果集中在他的代表作《圆锥曲线》一书中.阿波罗尼斯圆是他的研究成果之一,指的是已知动点与两定点,的距离之比,是一个常数,那么动点的轨迹就是阿波罗尼斯圆,圆心在直线上.已知动点的轨迹是阿波罗尼斯圆,其方程为,定点分别为椭圆的右焦点与右顶点,且椭圆的离心率为.
(1)求椭圆的标准方程;
(2)如图,过右焦点斜率为的直线与椭圆相交于,(点在轴上方),点,是椭圆上异于,的两点,平分,平分.
①求的取值范围;
②将点、、看作一个阿波罗尼斯圆上的三点,若外接圆的面积为,求直线的方程.
14.已知椭圆:,过椭圆左顶点的直线交抛物线于,两点,且,经过点的直线与椭圆交于,两点,且.
(1)证明:直线过定点.
(2)求四边形的面积最大值及的值.
15.已知椭圆的离心率,其左,右集点为,过点的直线与椭圆交于两点、的周长为.
(1)求椭圆的标准方程:
(2)过右焦点的直线互相垂直,且分别交椭圆于和四点,求的最小值
16.已知中心在原点,对称轴为坐标轴的椭圆的其中一个焦点在抛物线的准线上,并且椭圆的左顶点到左焦点的距离为.
(1)求椭圆的标准方程;
(2)一条直线与椭圆C分别交于A,B两点,且,试问点O到直线AB的距离是否为定值,并证明你的结论.
参考答案
1.B
【分析】
设底面圆的半径为,,以所在直线为轴,以垂直于所在直线为轴,以所在直线为轴建立空间直角坐标系,写出各个点的坐标.利用法向量求得二面角与夹角的余弦值.结合即可求得的取值范围,即可得的最大值.
【详解】
设底面圆的半径为,,以所在直线为轴,以垂直于所在直线为轴,以所在直线为轴建立空间直角坐标系,如下图所示:
则由
可得,
,是的两个三等分点

所以
设平面的法向量为
内容来自帮提分https://www.sfbroad.com转载请标明出处.
相关文档