下载此文档

高三数学人教A版选择性必修第一册阶段检测试卷10word版含答案.zip


高中 高三 上学期 数学 人教版

1340阅读234下载29页1.42 MB

下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
下载所得到的文件列表
文档介绍:
高中数学人教A版选择性必修第一册阶段检测试卷10
第I卷(选择题)
请点击修改第I卷的文字说明
一、单选题
1.如图,若正方体的棱长为1,点M是正方体的侧面上的一个动点(含边界),P是棱的中点,则下列结论正确的是( )
A.沿正方体的表面从点A到点P的最短路程为
B.若保持,则点M在侧面内运动路径的长度为
C.三棱锥的体积最大值为
D.若M在平面内运动,且,点M的轨迹为抛物线
2.已知点为抛物线的焦点,,点为抛物线上一动点,当最小时,点恰好在以,为焦点的双曲线上,则该双曲线的渐近线的斜率的平方为( )
A. B. C. D.
3.已知正方体的棱长为3,为棱上的靠近点的三等分点,点在侧面上运动,当平面与平面和平面所成的角相等时,则的最小值为( )
A. B. C. D.
4.过椭圆的左焦点作相互垂直的两条直线,分别交于椭圆、、、四点,则四边形面积最大值与最小值之差为( )
A. B. C. D.
5.过点作抛物线的切线,,切点分别为,,若的重心坐标为,且P在抛物线上,则的焦点坐标为( )
A. B. C. D.
6.的最小值为( )
A.5 B. C.6 D.
二、多选题
7.抛物线的焦点为,动直线与抛物线交于两点且,直线分别与抛物线交于两点,则下列说法正确的是( )
A.直线恒过定点 B.
C. D.若于点,则点的轨迹是圆
8.已知、是椭圆的左、右焦点,,椭圆上(异于顶点)的点满足,则下列选项正确的有( )
A.直线必定与椭圆相切
B.三角形与三角形面积之和为定值6
C.三角形与三角形面积之和为定值6
D.点、到直线的距离相等
第II卷(非选择题)
请点击修改第II卷的文字说明
三、填空题
9.已知圆,直线,点,点.给出下列4个结论:
①当时,直线与圆相离;
②若直线是圆的一条对称轴,则;
③若直线上存在点,圆上存在点,使得,则的最大值为;
④为圆上的一动点,若,则的最大值为.
其中所有正确结论的序号是__________.
10.如图,在长方体中,,点为线段上的动点(包含线段端点),则下列结论正确的__________.
①当时,平面;
②当时,平面;
③的最大值为;
④的最小值为.
11.已知单位向量两两的夹角均为(,且),若空间向量满足,,则有序实数组称为向量在“仿射”坐标系(O为坐标原点)下的“仿射”坐标,记作,有下列命题:
①已知,,则;
②已知,,其中,则当且仅当时,向量的夹角取得最小值;
③已知,,则;
④已知,,,则三棱锥的表面积.
其中真命题为________(写出所有真命题的序号).
12.如图,过抛物线的焦点作两条互相垂直的弦、,若与面积之和的最小值为16,则抛物线的方程为______.
四、解答题
13.已知椭圆经过点,其离心率为,设直线与椭圆相交于、两点.
(1)求椭圆的方程;
(2)已知直线与圆相切,求证:(为坐标原点).
14.1.已知椭圆的离心率为,右焦点到直线的距离为,,分别为椭圆的左、右顶点.
(1)求椭圆的方程;
(2)过点的直线交椭圆与,两点在轴上方),为直线,的交点.当点的纵坐标为时,求直线的方程.
15.阿波罗尼斯是古希腊著名数学家,他的主要研究成果集中在他的代表作《圆锥曲线》一书中.阿波罗尼斯圆是他的研究成果之一,指的是已知动点与两定点,的距离之比,是一个常数,那么动点的轨迹就是阿波罗尼斯圆,圆心在直线上.已知动点的轨迹是阿波罗尼斯圆,其方程为,定点分别为椭圆的右焦点与右顶点,且椭圆的离心率为.
(1)求椭圆的标准方程;
(2)如图,过右焦点斜率为的直线与椭圆相交于,(点在轴上方),点,是椭圆上异于,的两点,平分,平分.
①求的取值范围;
②将点、、看作一个阿波罗尼斯圆上的三点,若外接圆的面积为,求直线的方程.
16.在平面直角坐标系中,已知直线与椭圆交于点A,B(A在x轴上方),且.设点A在x轴上的射影为N,三角形ABN的面积为2(如图1).
(1)求椭圆的方程;
(2)设平行于AB的直线与椭圆相交,其弦的中点为Q.
①求证:直线OQ的斜率为定值;
②设直线OQ与椭圆相交于两点C,D(D在x轴的上方),点P为椭圆上异于A,B,C,D一点,直线PA交CD于点E,PC交AB于点F,如图2,求证:为定值.
参考答案
1.AB
【分析】
A选项,把两个平面展开到同一平面内,利用两点之间,线段最短进行求解,注意展开方式可能有多种;B选项,找到点M在侧面内的运动轨迹是圆弧,再
内容来自帮提分https://www.sfbroad.com转载请标明出处.
相关文档