下载此文档

2022年江苏高考数学试题及答案5.doc


高中 高三 上学期 数学 人教版

1340阅读234下载35页603 KB

下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
下载所得到的文件列表
2022年江苏高考数学试题及答案5.doc
文档介绍:
2017年江苏省高考数学试卷
 
一.填空题
1.(5分)已知集合A={1,2},B={a,a2+3}.若A∩B={1},则实数a的值为   .
2.(5分)已知复数z=(1+i)(1+2i),其中i是虚数单位,则z的模是   .
3.(5分)某工厂生产甲、乙、丙、丁四种不同型号的产品,产量分别为200,400,300,100件.为检验产品的质量,现用分层抽样的方法从以上所有的产品中抽取60件进行检验,则应从丙种型号的产品中抽取   件.
4.(5分)如图是一个算法流程图:若输入x的值为,则输出y的值是   .
5.(5分)若tan(α﹣)=.则tanα=   .
6.(5分)如图,在圆柱O1O2内有一个球O,该球与圆柱的上、下底面及母线均相切,记圆柱O1O2的体积为V1,球O的体积为V2,则的值是   .
7.(5分)记函数f(x)=定义域为D.在区间[﹣4,5]上随机取一个数x,则x
∈D的概率是   .
8.(5分)在平面直角坐标系xOy中,双曲线﹣y2=1的右准线与它的两条渐近线分别交于点P,Q,其焦点是F1,F2,则四边形F1PF2Q的面积是   .
9.(5分)等比数列{an}的各项均为实数,其前n项为Sn,已知S3=,S6=,则a8=   .
10.(5分)某公司一年购买某种货物600吨,每次购买x吨,运费为6万元/次,一年的总存储费用为4x万元.要使一年的总运费与总存储费用之和最小,则x的值是   .
11.(5分)已知函数f(x)=x3﹣2x+ex﹣,其中e是自然对数的底数.若f(a﹣1)+f(2a2)≤0.则实数a的取值范围是   .
12.(5分)如图,在同一个平面内,向量,,的模分别为1,1,,与的夹角为α,且tanα=7,与的夹角为45°.若=m+n(m,n∈R),则m+n=   .
13.(5分)在平面直角坐标系xOy中,A(﹣12,0),B(0,6),点P在圆O:x2+y2=50上.若≤20,则点P的横坐标的取值范围是   .
14.(5分)设f(x)是定义在R上且周期为1的函数,在区间[0,1)上,f(x)=,其中集合D={x|x=,n∈N*},则方程f(x)﹣lgx=0的解的个数是   .
 
二.解答题
15.(14分)如图,在三棱锥A﹣BCD中,AB⊥AD,BC⊥BD,平面ABD⊥平面BCD,点E、F(E与A、D不重合)分别在棱AD,BD上,且EF⊥AD.
求证:(1)EF∥平面ABC;
(2)AD⊥AC.
16.(14分)已知向量=(cosx,sinx),=(3,﹣),x∈[0,π].
(1)若∥,求x的值;
(2)记f(x)=,求f(x)的最大值和最小值以及对应的x的值.
17.(14分)如图,在平面直角坐标系xOy中,椭圆E:=1(a>b>0)的左、右焦点分别为F1,F2,离心率为,两准线之间的距离为8.点P在椭圆E上,且位于第一象限,过点F1作直线PF1的垂线l1,过点F2作直线PF2的垂线l2.
(1)求椭圆E的标准方程;
(2)若直线l1,l2的交点Q在椭圆E上,求点P的坐标.
18.(16分)如图,水平放置的正四棱柱形玻璃容器Ⅰ和正四棱台形玻璃容器Ⅱ的高均为32cm,容器Ⅰ的底面对角线AC的长为10cm,容器Ⅱ的两底面对角线EG,E1G1的长分别为14cm和62cm.分别在容器Ⅰ和容器Ⅱ中注入水,水深均为12cm.现有一根玻璃棒l,其长度为40cm.(容器厚度、玻璃棒粗细均忽略不计)
(1)将l放在容器Ⅰ中,l的一端置于点A处,另一端置于侧棱CC1上,求l没入水中部分的长度;
(2)将l放在容器Ⅱ中,l的一端置于点E处,另一端置于侧棱GG1上,求l没入水中部分的长度.
19.(16分)对于给定的正整数k,若数列{an}满足:an﹣k+an﹣k+1+…+an﹣1+an+1+…+an+k﹣1+an+k=2kan对任意正整数n(n>k)总成立,则称数列{an}是“P(k)数列”.
(1)证明:等差数列{an}是“P(3)数列”;
(2)若数列{an}既是“P(2)数列”,又是“P(3)数列”,证明:{an}是等差数列.
内容来自帮提分https://www.sfbroad.com转载请标明出处.
相关文档