下载此文档

人教版初中数学专题08 方案设计型问题(解析版).doc


初中 八年级 上学期 数学 人教版

1340阅读234下载30页694 KB

下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
下载所得到的文件列表
人教版初中数学专题08 方案设计型问题(解析版).doc
文档介绍:
玩转压轴题,争取满分之备战2020年中考数学解答题高端精品
专题八 方案设计型问题
【考题研究】
方案设计型问题,是指根据问题所提供的信息,运用学过的技能和方法,进行设计和操作,然后通过分析、计算、证明等,确定出最佳方案的一类数学问题。
随着新课程改革的不断深入,一些新颖、灵活、密切联系实际的方案设计问题正越来越受到中考命题人员的喜爱,这些问题主要考查学生动手操作能力和创新能力,这也是新课程所要求的核心内容之一。
【解题攻略】
(1)方程或不等式解决方案设计问题:首先要了解问题取材的生活背景;其次要弄清题意,根据题意建构恰当的方程模型或不等式模型,求出所求未知数的取值范围;最后再结合实际问题确定方案设计的种数.
(2)择优型方案设计问题:这类问题一般方案已经给出,要求综合运用数学知识比较确定哪种方案合理.此类问题要注意两点:一是要符合问题描述的要求,二是要具有代表性.
(3)操作型问题:大体可分为三类,即图案设计类、图形拼接类、图形分割类等.对于图案设计类,一般运用中心对称、轴对称或旋转等几何知识去解决;对于图形拼接类,关键是抓住需要拼接的图形与所给图形之间的内在关系,然后逐一组合;对于图形分割类,一般遵循由特殊到一般、由简单到复杂的动手操作过程.
【解题类型及其思路】
方案设计型问题涉及生产生活的方方面面,如:测量、购物、生产配料、汽车调配、图形拼接等。所用到的数学知识有方程、不等式、函数、解直角三角形、概率和统计等知识。这类问题的应用性非常突出,题目一般较长,做题之前要认真读题,理解题意,选择和构造合适的数学模型,通过数学求解,最终解决问题。解答此类问题必须具有扎实的基础知识和灵活运用知识的能力,另外,解题时还要注重综合运用转化思想、数形结合的思想、方程函数思想及分类讨论等各种数学思想。
【典例指引】
类型一 【利用不等式(组)设计方案】
【典例指引1】光明小区房屋外墙美化工程工地有大量货物需要运输,某车队有载重量为8吨和10吨的卡车共15辆,所有车辆运输一次能运输128吨货物.
(1)求该车队载重量为8吨、10吨的卡车各有多少辆?
(2)随着工程的扩大,车队需要一次运输货物170吨以上,为了完成任务,车队准备增购这两种卡车共5辆(两种车都购买),请写出所有可能的购车方案.
【答案】(1)8吨的有11辆,10吨的有4辆(2)购车方案:8吨1辆10吨4辆或者8吨2辆10吨3辆或者8吨3辆10吨2辆
【解析】
试题分析:(1)设该车队载重量为8吨的卡车有x辆,载重量为10吨的卡车有y辆,由题意可得等量关系:①卡车共15辆;②一次能运输128吨货物,根据等量关系列出方程组,再解即可;(2)设增购8吨的卡车有a辆,则增购10吨的卡车有(5-a)辆,由题意可得不等关系:8吨的卡车(11+a)辆运输的货物+10吨的卡车(9-a)辆运输的货物>170吨,根据不等关系列出不等式,再解即可.
试题解析:(1)设该车队载重量为8吨的卡车有x辆,载重量为10吨的卡车有y辆,由题意得:,
解得:,
答:8吨的有11辆,10吨的有4辆;
(2)设增购8吨的卡车有a辆,则增购10吨的卡车有(5﹣a)辆,由题意得:
(11+a)×8+10(5﹣a+4)>170,
解得:a<4,
∵a为正整数,
∴a=1,2,3,
购车方案:8吨1辆10吨4辆或者8吨2辆10吨3辆或者8吨3辆10吨2辆.
【名师点睛】此题主要考查了二元一次方程组和一元一次不等式的应用,关键是正确理解题意,找出题目中的等量关系或不等关系,列出方程组和不等式.
【举一反三】
如果第一次租用2辆A型车和1辆B型车装运水果,一次运货10吨;第二次租用1辆A型车和2辆B型车装水果,一次运货11吨(两次运货都是满载)
①求每辆A型车和B型车满载时各装水果多少吨?
②现有31吨水果需运出,计划同时租用A型车和B型车一次运完,且每辆车都恰好装满,请设计出有哪几种租车方案?
③若A型车每辆租金200元,B型车每辆租金300元,问哪种租车方案最省钱,最省钱的方案总共租金多少钱?
【答案】(1)1辆A型车满载为3吨,1辆B型车满载为4吨;(2)共三种方案;(3)最省钱方案为A型车1辆,B型车7辆,租车费用2100元.
【解析】试题分析:(1)根据“用2辆A型车和1辆B型车载满货物一次可运货10吨;”“用1辆A型车和2辆B型车载满货物一次可运货11吨”,分别得出等式方程,组成方程组求出即可;
(2)由题意理解出:3a+4b=31,解此二元一次方程,求出其整数解,得到三种租车方案;
(3)根据(2)中所求方案,利用A型车每辆需租金200元/次,B型车每辆需租金300元
内容来自帮提分https://www.sfbroad.com转载请标明出处.
相关文档