下载此文档

人教版第14讲 数学思想应用专题-2020年中考数学《二轮冲刺核心重点难点热点15讲》(全国通用)解析版.doc


初中 八年级 上学期 数学 人教版

1340阅读234下载34页1.43 MB

下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
下载所得到的文件列表
人教版第14讲 数学思想应用专题-2020年中考数学《二轮冲刺核心重点难点热点15讲》(全国通用)解析版.doc
文档介绍:
硬核:狙击2020中考数学重点/难点/热点
分类讨论思想
分类讨论思想是指当被研究的问题存在一些不确定的因素,无法用统一的方法或结论给出统一的表述时,按可能出现的所有情况来分别讨论,得出各情况下相应的结论.分类的原则:(1)分类中的每一部分是相互独立的;(2)一次分类必须是同一个标准;(3)分类讨论要逐级进行;(4)分类必须包含所有情况,既不能重复,也不能有遗漏.
数形结合思想
数形结合思想是把抽象思维和形象思维结合起来分析问题,将抽象的数学语言和直观的图形语言结合起来表示问题,从而解决问题的数学思想.运用数形结合思想解决问题,关键是要找到数与形的契合点.数形结合在不等式(组)、函数等知识中有着广泛的应用,综合题中始终渗透着对数形结合思想的考查.
转化思想
转化思想的运用可以让我们在遇到较为复杂的题型时,能够辩证进行分析。通过一定方式,让繁杂的问题简单清晰化,让陌生的题型熟悉化,让抽象题型更具体。准确的说,可以把各种隐藏在题目内的隐含问题全部明显的罗列出来,从一个信息条件快速的转化出更多的信息条件。转化思想的内涵相当丰富,可以将数量、图形、概念等统统进行转化,从而达到解题的效果。
代数解析思想
解析思想本属于代数类题型的解题方法,但在解答一些几何题时,特别是计算几何边长或者关于某个点的相关信息时,常常构建平面直角坐标系,将几何问题代数化,计算线段长度,转为计算点的坐标,直线解析式,运用诸如两点间距离公式,中点坐标公式等来进行解答.
方程思想
顾名思义,在解答几何题或者函数类题目时,常常对未知量或者是几个变量之间的分数关系进行设未知数来表达,通过寻找等量关系求解位置量的方法技巧.
【例题1】-分类讨论思想
将矩形ABCD绕点A顺时针旋转α(0°<α<360°),得到矩形AEFG.
(1)如图,当点E在BD上时,求证:FD=CD;
(2)当α为何值时,GC=GB?画出图形,并说明理由.
【解析】(1)如图1,连接AF.
由四边形ABCD是矩形,结合旋转可得:
BD=AF,∠EAF=∠ABD.
∵AB=AE,∴∠ABD=∠AEB,
∴∠EAF=∠AEB,∴BD∥AF,
∴四边形BDFA是平行四边形,∴FD=AB.
∵AB=CD,∴FD=CD.
(2)如图2,当点G位于BC的垂直平分线上,且在BC的右边时,连接DG,CG,BG,
易知点G也是AD的垂直平分线上的点,
∴DG=AG.
又∵AG=AD,
∴△ADG是等边三角形,
∴∠DAG=60°,∴α=60°.
如图3,当点G位于BC的垂直平分线上,且在BC的左边时,连接CG,BG,DG,
同理,△ADG是等边三角形,
∴∠DAG=60°,此时α=300°.
综上所述,当α为60°或300°时,GC=GB.

【总结】在数学中,如果一个命题的条件或结论有多种可能的情况,难以统一解答,那么就需要按可能出现的各种情况分类讨论,最后综合归纳问题的正确答案.
【变式1-1】已知在△ABC中,tanA=,AB=5,BC=4,那么AC的长等于__________.
【变式1-2】8.(2016•江西模拟)如图,矩形ABCD,AB=5,AD=8,E是AD上一动点,把△ABE沿BE折叠,当点A的对应点A′落在矩形ABCD的对称轴上时,折痕BE的长为 和 .
【解析】如图1,过A′作MN∥CD交AD于M,交BC于N,
则直线MN是矩形ABCD 的对称轴,
∴AM=BN=AD=4,
∵△ABE沿BE折叠得到△A′BE,
∴A′E=AE,A′B=AB=5,
∴A′N==3,
∴A′M=2,
∴A′E2=EM2+A′M2,
∴A′E2=(4﹣A′E)2+22,
解得:A′E=,
∴AE=,
在Rt△ABE中,BE==,
如图2,过A′作PQ∥AD交AB于P,交CD于Q,
则直线PQ是矩形ABCD 的对称轴,
∴PQ⊥AB,AP=PB,AD∥PQ∥BC,
∴A′B=2PB,
∴∠PA′B=30°,
∴∠A′BC=30°,
∴∠EBA′=30°,
∴BE=;
故答案为:和.

【例题2】-数形结合思想
如图,在在四边形ABCD中,AD∥BC,∠B=90°,且AD=12cm,AB=8cm,DC=10cm,若动点P从A点出发,以每秒2cm的速度沿线段AD向点D运动;动点Q从C点出发以每秒3cm的速度沿CB向B点运动,当P点到达D点时,动点P、Q同时停止运动,
内容来自帮提分https://www.sfbroad.com转载请标明出处.
相关文档